ETTORI Bastien	BTS SIO 1 ^{ère} année
24 mai 2015	Année scolaire : 2014/2015
Option : SISR	Version 1.0

DHCP – RELAIS DHCP CISCO

SOMMAIRE :

Objectif	2
Pré-requis	2
Définitions	2
Mise en place du serveur DHCP	3-4
Mise en place du relais DHCP	4-5
Conclusion	5
	Objectif Pré-requis Définitions Mise en place du serveur DHCP Mise en place du relais DHCP Conclusion

ETTORI Bastien	BTS SIO 1 ^{ère} année
24 mai 2015	Année scolaire : 2014/2015
Option : SISR	Version 1.0

I) <u>Objectif</u>

Ce tutoriel permet de mettre en place un serveur **DHCP** sur un routeur **Cisco** ainsi qu'un relais **DHCP** pour faire de la tolérance de panne.

II) <u>Prérequis</u>

Pour réaliser cette procédure, nous avons besoin des équipements suivants :

Logiciel	Version du	Nombre de	Nombre de	Nombre de	Version du
utilisé	logiciel	postes	switchs	routeurs	Switch
Cisco Packet Tracer	6.0	2	1 switch Cisco	1 routeur Cisco	Cisco 2960

Voici le schéma sur lequel nous allons nous appuyer :

III) <u>Définitions</u>

- Un serveur **DHCP** (**D**ynamic **H**ost **C**onfiguration **P**rotocol) permet de distribuer à un client au minimum 3 éléments : une adresse **IP**, un masque de sous-réseau et un bail **DHCP** (durée de vie de l'adresse définie) de manière automatique.
- Un relais **DHCP** permet de prendre la place du premier serveur **DHCP** si celui-ci tombe en panne. C'est-à-dire posséder un deuxième serveur **DHCP**.

ETTORI Bastien	BTS SIO 1 ^{ère} année
24 mai 2015	Année scolaire : 2014/2015
Option : SISR	Version 1.0

IV) Mise en place du serveur DHCP

- Pour ce faire, nous devons taper les commandes suivantes :

```
Router>en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ip dh
Router(config)#ip dhcp po
Router(config)#ip dhcp pool client
Router(dhcp-config)#network 192.168.10.0 255.255.255.0
Router(dhcp-config)#exit
Router(config)#ip dh
Router(config)#ip dhcp exc
Router(config)#ip dhcp excluded-address 192.168.10.10 192.168.10.99
Router(config)#exit
Router#
%SYS-5-CONFIG_I: Configured from console by console
```

Selon la plage d'adresses définie, les clients peuvent recevoir une adresse entre la **10.1** et la **10.10** car nous devons saisir une plage d'exclusion d'adresses.

- Ensuite, nous testons sur le premier poste (PCO) :

R	PC0	
IP Configuration		Х
IP Configuration DHCP O Sta	tic DHCP request successful.	
IP Address	192.168.10.2	
Subnet Mask	255.255.255.0	
Default Gateway	0.0.0.0	
DNS Server		

- Ensuite, nous testons sur le second poste (PC1) :

ETTORI Bastien	BTS SIO 1 ^{ère} année
24 mai 2015	Année scolaire : 2014/2015
Option : SISR	Version 1.0

R	PC1	
IP Configuration		Х
IP Configuration		
IP Address	192.168.10.3	
Subnet Mask	255.255.255.0	
Default Gateway	0.0.0.0	
DNS Server		

Donc, nous pouvons constater que les 2 machines reçoivent une configuration IP automatiquement.

V) Mise en place d'un relais DHCP

- Ensuite, pour mettre en place le relais DHCP, nous procédons de cette manière :

```
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#interface f
Router(config)#interface fastEthernet 0/0.10
Router(config-subif)#ip help
Router(config-subif)#ip helper-address 192.168.20.2
Router(config-subif)#end
Router#
%SYS-5-CONFIG_I: Configured from console by console
```

Ici, dans cet exemple, l'adresse IP du serveur DHCP est : 192.168.20.2

- Ensuite, pour vérifier la configuration **DHCP**, nous devons taper la commande suivante :

ETTORI Bastien	BTS SIO 1 ^{ère} année
24 mai 2015	Année scolaire : 2014/2015
Option : SISR	Version 1.0

```
Router#sh run
Building configuration ...
Current configuration : 939 bytes
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
.
hostname Router
T
I
T
T
ip dhcp excluded-address 192.168.10.10 192.168.10.99
ip dhcp pool client
network 192.168.10.0 255.255.255.0
```

➡ Ici, nous voyons la plage d'adresses exclue, le nom du pool d'adresse et le réseau concerné.

```
interface FastEthernet0/0.10
encapsulation dot1Q 10
ip address 192.168.10.1 255.255.255.0
ip helper-address 192.168.10.11
ip helper-address 192.168.20.2
!
interface FastEthernet0/0.20
encapsulation dot1Q 20
ip address 192.168.20.1 255.255.255.0
```

➡ Ici, nous pouvons voir la sous-interface qui a été configurée en tant que relais DHCP avec son adresse IP.

VI) <u>Conclusion</u>

En conclusion, nous pouvons dire que le serveur **DHCP** fonctionne correctement et que le relais **DHCP** est correctement configuré sur le réseau.