ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

DNS DYNAMIQUE DEBIAN

SOMMAIRE :

I)	Objectif2
II)	Prérequis2
III)	Définitions2
IV)	Serveur DNS Maître2-6
	a) Installation du service DNS « bind9 »2
	b) Configuration des fichiers du dossier « /etc »3
	c) Déclaration des zones DNS3-4
	d) Configuration de la zone directe4
	e) Configuration de la zone inversée5
	f) Tests des résolutions DNS5-6
V)	Serveur DNS Esclave7-9
	a) Installation du service DNS « bind9 »7
	b) Configuration des fichiers du dossier « /etc »7
	c) Déclaration des zones DNS8-9
VI)	Tests de résolutions de noms pour les 2 serveurs10-14
	a) Réponse du DNS Maître10-11
	b) Réponse du DNS Esclave11-12
	c) Test avec un client12-14
VII)	DNS dynamique14-17
	a) Configuration du service DHCP14-15
	b) Configuration pour les clients16-17
VIII)	Tests sur les clients17-19
IX)	Conclusion 19

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

I) <u>Objectif</u>

Dans cette procédure, nous allons montrer comment installer et configurer un serveur **DNS Maître (principal)** et **Esclave (secondaire)** sous Debian.

II) <u>Prérequis</u>

Pour réaliser cette procédure, nous avons besoin des éléments suivants :

OS	Distribution Version C/S		C/S	IP du serveur DNS Maître	IP du serveur DNS Esclave	
Debian Jessie	Linux	8.5	S	192.168.1.132	192.168.1.133	

Nom complet du serveur DNS MaîtreNom complet du serveur DNS Esclave		Nom de domaine
DNSMaitre.ettori.local	DNSEsclave.ettori.local	ettori.local

Nom du serveur DHCP pour le DNS	Adresse IP du serveur DHCP pour le DNS
dynamique	dynamique
DHCP	192.168.1.135

III) <u>Définitions</u>

- Le service **DNS** (**D**omain **N**ame **S**ystem) permet de résoudre un nom de domaine, les adresses IP en noms d'hôtes et les noms d'hôtes en adresses IP. Celui-ci permet aux utilisateurs de naviguer sur Internet.
- Le service **DHCP** (**D**ynamic **H**ost **C**onfiguration **P**rotocol) permet d'attribue dynamiquement au minimums 3 éléments : une adresse IP, un masque de sous-réseau et un bail **DHCP** (durée de vie l'adresse IP attribuée) selon une plage d'adresses définie.
- Le **DNS dynamique** permet, au moyen d'un serveur **DHCP**, de mettre à jour automatiquement les zones **DNS** créées.

IV) Serveur DNS Maître

a) Installation du service DNS « bind9 »

- Tout d'abord, nous mettons à jour les paquets :

root@DNSMaitre:~# apt-get update

- Nous installons le service « bind9 » :

root@DNSMaitre:~# apt–get install bind9.

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

- b) Configuration des fichiers du dossier « /etc »
- Tout d'abord, nous renommons la machine :

GNU nano 2.2.6	Fichier	:	/etc/hostname
DNSMaitre.ettori.local			

- Dans le fichier « **/etc/hosts** », nous ajoutons l'adresse IP du serveur, son nom complet et simplifié :

GNU nano	2.2.6	Fichier :	/etc/hosts	
127.0.0.1	localhost			
127.0.1.1	DNSMaitre			
192.168.1.1	.32 DNSMaitre.	.ettori.local	D	NSMaitre

- Dans le fichier « **/etc/resolv.conf** », nous modifions le nom et la recherche du domaine, et l'adresse IP du serveur **DNS** :

GNU nano 2.2.6	Fichier	:	/etc/resolv.conf
domain ettori.local			
search ettori.local			
nameserver 192.168.1.132			

- Maintenant, nous ajoutons l'adresse IP du serveur en nom **DNS** dans le fichier « **/etc/network/interfaces** » :

allow–hotplug ethO
iface ethO inet static
address 192.168.1.132
netmask 255.255.255.0
gateway 192.168.1.254
dns-nameservers 192.168.1.132

c) **Déclaration des zones DNS**

Nous éditons le fichier « /etc/bind/named.conf.local » pour renseigner les zones :

⇒ <u>Voici la configuration zone directe</u> :

-

GNU	nano	2.2.6	Fichier	:	/etc/bj	ind∕	/named	d.cor	nf.lo	ocal
// // Do //	any i	local conf.	iguration ł	ner	^e					
// Cor // or§ //inc:	nsider ganiza lude '	r adding t⊦ ation '∕etc∕bind.	∩e 1918 zor ∕zones.rfc1	1e: 19:	s here, 18";	if	they	are	not	use
zone ' type r file ' };	"ettor master "∕var∕	ri.local" : ; /cache/bind	IN { d∕db.ettori	i	local";					

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

<u>Remarque</u> : le fichier de zone **directe** se nommera « **db.ettori.local** ».

➡ Voici la zone inversée :

<u>Remarque</u> : le fichier de zone **inversée** se nommera « **rev.ettori.local** ».

- Nous vérifions la configuration si celle-ci est correcte :

```
root@DNSMaitre:~# named–checkconf /etc/bind/named.conf.local
root@DNSMaitre:~# _
```

Ici, nous constatons que c'est le cas.

```
d) <u>Configuration de la zone directe</u>
```

- Nous créons le fichier de la zone directe dans le dossier « /var/cache/bind » :

root@DNSmaitre:/var/cache/bind# touch db.ettori.local root@DNSmaitre:/var/cache/bind# _

- Nous l'éditons et renseignons les enregistrements suivants :

```
GNU nano 2.2.6 Fichier : /var/cache/bind/db.ettori.local

$TTL 86400

IN SOA DNSMaitre.ettori.local. root.ettori.local (

2016092201

3600

180

3600

50 )

IN NS DNSMaitre.ettori.local.

DNSMaitre.ettori.local. IN A 192.168.1.132
```

- ⇒ « **2016092201** » correspond au numéro de série.
- ⇒ Le premier « **3600** » est la valeur numérique de rafraîchissement.
- ⇒ « 180 » correspond à la tentative de connexion au serveur DNS Esclave.
- ⇒ Le second « **3600** » représente l'absence de communication au serveur.
- ⇒ « 60 » représente au temps de réponse négatif.
- Enfin, nous testons la configuration de la zone directe et constatons que celle-ci est correcte grâce au message « **OK** » :

```
root@DNSMaitre:~# named–checkzone ettori.local /var/cache/bind/db.ettori.local
zone ettori.local/IN: loaded serial 2016092201
OK
root@DNSMaitre:~# _
```

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

- e) Configuration de la zone inversée
- Nous créons le fichier de la zone inversée dans le dossier « /var/cache/bind » :

root@DNSMaitre:/var/cache/bind# touch rev.ettori.local root@DNSMaitre:/var/cache/bind# _

- Nous l'éditons et mettons les enregistrements suivants :

```
GNU nano 2.2.6 Fichier : /var/cache/bind/rev.ettori.local

$TTL 86400

@ IN SOA DNSMaitre.ettori.local. root.ettori.local (

2016092201

3600

180

3600

60 )

@ IN NS DNSMaitre.ettori.local.

108 IN PTR DNSMaitre.ettori.local.
```

- Nous testons la configuration de la zone inversée et constatons que celle-ci est correcte :

```
root@DNSMaitre:~# named-checkzone rev.ettori.local /var/cache/bind/rev.ettori.lo
cal
zone rev.ettori.local/IN: loaded serial 2016092201
OK
root@DNSMaitre:~# __
```

- Nous redémarrons le service « bind9 » pour prendre en compte les modifications :

```
root@DNSMaitre:~# systemctl restart bind9.service
root@DNSMaitre:~# _
```

- f) Tests des résolutions DNS
- Nous testons la résolution de noms grâce à la commande « nslookup » :

root@DI Server Address	NSMaitre:~# <mark>nslo</mark> 0 : 192.168 s: 192.168	0Kup DNSM 8.1.132 8.1.132#5	¦aitre.ettori. 33	local
Name: Addres:	DNSMaitre.ettor s: 192.168.1.132	i.local		
root@DNSMaitr Gerver: Address:	e:~# nslookup 19 192.168.1.132 192.168.1.132	2.168.1.: #53	132	
132.1.168.192	.in-addr.arpa	name :	= DNSMaitre.et	ttori.local.

Nous constatons que la résolution **DNS** des 2 zones fonctionne.

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

- Nous pouvons également la tester grâce à la commande « dig » :

root@DNSMaitre:~# dig DNSMaitre.ettori.local <<>> DiG 9.9.5-9+deb8u6-Debian <<>> DNSMaitre.ettori.local ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 5452 ;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL: 1 ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ;; QUESTION SECTION: ;DNSMaitre.ettori.local. IN ;; ANSWER SECTION: DNSMaitre.ettori.local. 86400 IN 192.168.1.132 ;; AUTHORITY SECTION: ettori.local. 86400 IN NS DNSMaitre.ettori.local. ;; Query time: 26 msec ;; SERVER: 192.168.1.132#53(192.168.1.132) ;; WHEN: Thu Sep 22 11:15:04 CEST 2016 MSG SIZE rovd: 81 ;; oot@DNSMaitre:~# dig 192.168.1.132 <<>> DiG 9.9.5-9+deb8u6-Debian <<>> 192.168.1.132 ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 12778 ;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1 ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 4096 ; QUESTION SECTION: ;192.168.1.132. IN ;; AUTHORITY SECTION: 10800 SOA a.root–servers.net. nstld.verisi gn-grs.com. 2016092200 1800 900 604800 86400 ;; Query time: 417 msec ; SERVER: 192.168.1.132#53(192.168.1.132) WHEN: Thu Sep 22 11:16:08 CEST 2016 MSG SIZE rcvd: 117

Enfin, nous pouvons redémarrer les fichiers de zone sans redémarrer le service DNS
 « bind9 » pour assurer une continuité de services :

root@DNSMaitre:~# rndc reload
server reload successful
root@DNSMaitre:~# 🔔

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

V) <u>Serveur DNS Esclave</u>

- a) Installation du service DNS « bind9 »
- Nous mettons à jour les paquets :

```
root@DNSEsclave:~# apt-get update
```

- Nous installons le service « **bind9** » :

```
root@DNSEsclave:~# apt-get install bind9_
```

- b) Configuration des fichiers du dossier « /etc »
- Nous renommons la machine :

GNU nano 2.	2.6	Fichier	:	/etc/hostname
DNSEsclave.et	tori.local			

- Dans le fichier « **/etc/hosts** », nous ajoutons l'adresse IP du serveur, son nom complet et son nom comme sur le serveur **Maître** :

GNU nano	2.2.6	Fichier	:	/etc/hosts	
127.0.0.1	localhost				
127.0.1.1	DNSEsclave				
192.168.1.1	133 DNSEsclave	.ettori.loo	al	DN	<pre>ISEsclave</pre>

- Dans le fichier « **/etc/resolv.conf** », nous modifions le nom de domaine, la recherche de celui-ci et l'adresse IP des serveurs **DNS Maître** et **Esclave** :

- Maintenant, nous ajoutons l'adresse IP du serveur en nom **DNS** dans le fichier « **/etc/network/interfaces** » :

allow–hotplug ethO
iface ethO inet static
address 192.168.1.133
netmask 255.255.255.0
gateway 192.168.1.254
dns-nameservers 192.168.1.132

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

- c) <u>Déclaration des zones DNS</u>
- Nous éditons le fichier « /etc/bind/named.conf.local » pour saisir les zones :
 - ➡ Voici la configuration de la zone directe :

⇒ Voici la configuration de la zone inversée :

```
zone "1.168.192.in–addr.arpa" IN {
type slave;
masters {192.168.1.132;};
file "/var/cache/bind/rev.ettori.local";
.
```

<u>Remarque</u> : Les fichiers de zone portent le même nom que ceux du serveur **Maître**.

- Nous vérifions la configuration et constatons que celle-ci est correcte :

```
root@DNSEsclave:~# named–checkconf /etc/bind/named.conf.local
root@DNSEsclave:~# _
```

 Nous retournons sur le serveur Maître et ajoutons les 4 lignes en jaune pour les 2 zones qui permettent de transférer les zones du serveur Esclave vers le serveur Maître :

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

- Nous devons modifier les fichiers de zone :
 - ⇒ <u>Contenu du fichier de zone directe</u> :

```
GNU nano 2.2.6 Fichier : /var/cache/bind/db.ettori.local
```

```
$TTL 86400
@ IN SOA DNSMaitre.ettori.local. root.ettori.local (
2016092204
3600
180
3600
60 )
@ IN NS DNSMaitre.ettori.local.
@ IN NS DNSEsclave.ettori.local.
DNSMaitre.ettori.local.
DNSMaitre.ettori.local. IN A 192.168.1.132
DNSEsclave.ettori.local. IN A 192.168.1.133
```

⇒ Contenu du fichier de zone inversée :

GNU	nano	2.2.6	Fichier	:	/var/cache/bind/rev.ettori.local
\$TTL 8	36400				
@ IN 3	SOA DN	∖SMaitre	.ettori.loc	a:	l. root.ettori.local (
201609	92204				
3600					
180					
3600					
60)					
@ IN M	VS DNS	SMaitre.	ettori.loca	al.	
@ IN M	VS DNS	SEsclave	.ettori.loc	a:	L
132 IM	N PTR	DNSMait	re.ettori.]	loc	cal.
133 IN	N PTR	DNSEsc1	ave.ettori.	10	ocal.

- Nous redémarrons le service « **bind9** » sur les 2 serveurs pour prendre en compte les modifications :

« systemctl restart bind9.service ».

- Nous visualisons les logs à la fin du fichier « **/var/log/syslog** » pour vous si tout s'est bien passé pour la résolution de noms et constatons que cela a fonctionné car comme nous voyons que les 2 zones ont bien été transférées :

Sep	29	10:05:29	DNSMaitre	named[1345]:	zone	ettori.local/IN: loaded serial 20160
9220	04					
Sep	29	10:05:29	DNSMaitre	named[1345]:	zone	255.in-addr.arpa/IN: loaded serial 1
Sep	29	10:05:29	DNSMaitre	named[1345]:	zone	localhost/IN: loaded serial 2
Sep	29	10:05:29	DNSMaitre	named[1345]:	zone	1.168.192.in-addr.arpa/IN: loaded se
ria.	1 20	016092204				
Sep	29	10:05:29	DNSMaitre	named[1345]:	all :	zones loaded
Sep	29	10:05:29	DNSMaitre	named[1345]:	runn.	ing
Sep	29	10:05:29	DNSMaitre	named[1345]:	zone	1.168.192.in-addr.arpa/IN: sending n
oti	fie	s (serial	2016092204	1)		
Sep	29	10:05:29	DNSMaitre	named[1345]:	zone	ettori.local/IN: sending notifies (s
eria	al :	2016092204	4)			

ETTORI Bastien	BTS SIO 2 ^{ème} année		
29 Septembre 2016	Année scolaire : 2016/2017		
Option : SISR	Version 1		

VI) <u>Tests de résolutions de noms pour les 2 serveurs</u>

Nous testons les résolutions des adresses IP et les noms des 2 serveurs **DNS** sur les 2 serveurs.

a) <u>Réponse du DNS Maître</u>

- <u>Sur le serveur DNS Maître</u> :

root@DNSMaitre Server: Address:	*** nslookup 192. 192.168.1.132 192.168.1.132#5	.168.1.132 53
132.1.168.192.	in–addr.arpa	name = DNSMaitre.ettori.local.
root@DNS Server: Address:	Maitre:~# <mark>nslook</mark> 192.168. 192.168.	tup DNSMaitre.ettori.local .1.132 .1.132#53
Name: Address:	DNSMaitre.ettori 192.168.1.132	i.local
root@DNSMaitre: Server: Address:	<pre>~# nslookup 192. 192.168.1.132 192.168.1.132#5</pre>	168.1.133 53
133.1.168.192.i	n–addr.arpa	name = DNSEsclave.ettori.local
root@DNSI Server: Address:	Maitre:‴# <mark>nslooku</mark> 192.168.1 192.168.1	up DNSEsclave.ettori.local 1.132 1.132#53
Name: I Address:	DNSEsclave.ettori 192.168.1.133	i.local
- Sur le serveur D	NS Esclave :	
root@DNSEsclave Server: Address:	e:~# nslookup 192 192.168.1.132 192.168.1.132#5	2.168.1.132 53
132.1.168.192.1	in–addr.arpa	name = DNSMaitre.ettori.local.
root@DNSI Server: Address:	Esclave:~# <mark>nslook</mark> 192.168.1 192.168.1	kup DNSMaitre.ettori.local 1.132 1.132#53
Name: I Address:	DNSMaitre.ettori. 192.168.1.132	.local
root@DNSEsclave Server: Address:	<pre>** nslookup 192 192.168.1.132 192.168.1.132#5</pre>	3
133.1.168.192.i	n–addr.arpa	name = DNSEsclave.ettori.local.

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

root@DNSEsclave:	~# nslookup DNSEsclave.ettori.local
Server:	192.168.1.132
Address:	192.168.1.132#53
Name: DNSEscla Address: 192 168	ve.ettori.local

Donc, nous constatons que c'est le serveur **DNS Maître** est fonctionnelle qui répond par défaut, soit l'adresse IP : **192.168.1.132**.

- b) Réponse du DNS Esclave
- Pour effectuer les tests de réponse du serveur DNS Esclave, nous éteignons d'abord le service « bind9 » sur le serveur DNS Maître ou mettre en commentaire dans le fichier « /etc/resolv.conf » le nom du serveur DNS Maître :

« systemctl stop bind9.service ».

<u>OU</u> :

« <u>#</u>nameserver 192.168.1.132 ».

- Sur le serveur DNS Maître :

	XII	100 1 10	0	
root@DNSMaitre: Server: Address:	# hslookup 192. 192.168.1.133 192.168.1.133#5	168.1.13 3	2	
132.1.168.192.i	∩–addr.arpa	name =	DNSMaitre.ettori.	local.
root@DNSM Server: Address:	aitre:~# nslooku 192.168.1 192.168.1	ip DNSMaj 133 133#53	itre.ettori.local	
Name: D Address:	NSMaitre.ettori. 192.168.1.132	local		
root@DNSMaitre:^ Server: Address:	# nslookup 192.1 192.168.1.133 192.168.1.133#53	.68.1.133 }	}	
133.1.168.192.in	-addr.arpa	name = [)NSEsclave.ettori	.local.
root@DNSMa Server: Address:	itre:~# <mark>nslooku;</mark> 192.168.1 192.168.1	0 DNSEsc .133 .133#53	lave.ettori.local	
Name: DM Address: 1	ISEsclave.ettori. 92.168.1.133	.local		
- Sur le serveur DN	S Esclave :			
root@DNSEsclave: Server: Address:	**# nslookup 192 192.168.1.133 192.168.1.133#5:	.168.1.1 3	32	
132.1.168.192.ir	n−addr.arpa	name =	DNSMaitre.ettori.	local.

ETTORI Bastien	BTS SIO 2 ^{ème} année		
29 Septembre 2016	Année scolaire : 2016/2017		
Option : SISR	Version 1		

oot@DNSEsclave:∼# nslookup DNSMaitre.ettori.local 192.168.1.133 Server: Address: 192.168.1.133#53 DNSMaitre.ettori.local Name: Address: 192.168.1.132 oot@DNSEsclave:~# nslookup 192.168.1.133 192.168.1.133 Server: 192.168.1.133#53 Address: 133.1.168.192.in–addr.arpa name = DNSEsclave.ettori.local oot@DNSEsclave:~# nslookup DNSEsclave.ettori.local Server: 192.168.1.133 Address: 192.168.1.133#53 DNSEsclave.ettori.local Name: Address: 192.168.1.133

Donc, nous constatons que le serveur **DNS Esclave** répond en cas de défaillance du serveur **Maître**, soit l'adresse IP : **192.168.1.133**.

c) Test avec un client

 Nous ajoutons un client dans les 2 fichiers de zones sur le serveur DNS Maître en modifiant également le numéro de série pour prendre en compte la résolution de noms :

```
GNU nano 2.2.6 Fichier : /var/cache/bind/db.ettori.local

$TTL 86400

@ IN SOA DNSMaitre.ettori.local. root.ettori.local (

2016092205

3600

180

3600

60 )

@ IN NS DNSMaitre.ettori.local.

@ IN NS DNSEsclave.ettori.local.

DNSMaitre.ettori.local. IN A 192.168.1.132

DNSEsclave.ettori.local. IN A 192.168.1.133

POSTE24.ettori.local. IN A 192.168.1.74
```

ETTORI Bastien	BTS SIO 2 ^{ème} année	
29 Septembre 2016	Année scolaire : 2016/2017	
Option : SISR	Version 1	

GNU nano 2.2.6 Fichier : /var/cache/bind/rev.ettori.local

\$TTL 86400
@ IN SOA DNSMaitre.ettori.local.root.ettori.local (
20160922 <mark>05</mark>
3600
180
3600
60)
@ IN NS DNSMaitre.ettori.local.
@ IN NS DNSEsclave.ettori.local.
132 IN PTR DNSMaitre.ettori.local.
133 IN PTR DNSEsclave.ettori.local.
74 IN PTR POSTE24.ettori.local.

- Nous redémarrons le service « bind9 » sur les 2 serveurs DNS :

« systemctl restart bind9.service ».

- Maintenant, nous allons tester la résolution de noms du client intégré :
 - ⇒ Test de la réponse du serveur DNS Maître sur le DNS Maître :

root@DNSMaitre Server: Address:	*** nslookup 19 192.168.1.132 192.168.1.132	2.168.1.74 #53		
74.1.168.192.in	∩–addr.arpa	name =	POSTE24.ettori	.local.
root@DNS Server: Address:	Maitre:~# nsloc 192.168 192.168	0Kup POSTE: 3.1.132 3.1.132#53	24.ettori.local	
Name: Address:	POSTE24.ettori. 192.168.1.74	local		
⇔ <u>Test de la répo</u>	onse du serveur DNS	Maître sur le	DNS Esclave :	
root@DNSEsclave Server: Address:	e:~# nslookup 1 192.168.1.132 192.168.1.132	92.168.1.7 #53	4	
74.1.168.192.ir	n-addr.arpa	name =	POSTE24.ettori	.local.
root@DNSE Server: Address:	sclave:~# <mark>nslo</mark> 192.168 192.168	okup POSTE .1.132 .1.132#53	24.ettori.loca	1
Name: F Address:	POSTE24.ettori. 192.168.1.74	local		

ETTORI Bastien	BTS SIO 2 ^{ème} année	
29 Septembre 2016	Année scolaire : 2016/2017	
Option : SISR	Version 1	

- Maintenant, nous éteignons le service « **bind9** » sur les 2 serveurs **DNS** et testons la réponse du **DNS Esclave** :

Test de la réponse du serveur DNS Esclave sur le DNS Maître :

root@DNSMaitr Server: Address:	re:~# nslookup 192 192.168.1.133 192.168.1.133#	:.168.1.74 [:] 53	
74.1.168.192.	in–addr.arpa	name = POSTE24.e	ttori.local.
root@D Server Addres	NSMaitre:~# <mark>nsloo</mark> : 192.168 s: 192.168	kup POSTE24.ettori .1.133 .1.133#53	.local
Name: Addres	POSTE24.ettori. s: 192.168.1.74	local	

Test de la réponse du serveur DNS Esclave sur le DNS Esclave :

root@DNSEscla Server: Address:	ive:~# nslookup 1 192.168.1.133 192.168.1.133	92.168.1.74 #53	
74.1.168.192.	in–addr.arpa	name = POSTE24.et	tori.local.
root@DN Server: Address	SEsclave:~# <mark>nslo</mark> 192.168 :: 192.168	okup POSTE24.ettori. .1.133 .1.133#53	local
Name: Address	POSTE24.ettori. : 192.168.1.74	local	

Donc, nous constatons que les 2 serveurs **DNS** sont fonctionnels car les 2 zones résolvent bien leurs noms et leurs adresses IP.

<u>NB</u> : Le serveur **DNS Esclave** étant mis en place et fonctionnel, il permettra, en cas de panne du serveur **DNS Maître**, de prendre le relais et d'assurer une continuité de services.

VII) DNS dynamique

- a) Configuration du service DHCP
- Tout d'abord, nous mettons à jour les paquets sur le serveur DHCP :

root@DHCP:~# apt-get update

- Nous installons sur ce nouveau serveur le service « isc-dhcp-server » :

root@DHCP:~# apt-get install isc-dhcp-server.

Ici, nous ne possédons que 4 adresses IP (3 en IP fixe et 1 en DHCP), Donc, nous n'avons qu'une adresse IP à distribuer. Avant de configurer le serveur DHCP, si nous voulons attribuer 2 adresses IP pour une étendue DHCP, nous éteignons le serveur DNS Esclave et mettons son adresse IP dans la plage d'adresses IP en plus de celle qui n'est pas utilisée pour tester la récupération des configurations TCP/IP différentes des 2 clients :

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

root@DNSEsclave:~# poweroff

<u>Remarque</u> : Dans un réseau normal, nous ne procédons pas de cette manière.

- Pour ce faire, nous le configurons en nous rendant dans le fichier « /etc/dhcp/dhcpd.conf » afin qu'il puisse démarrer et distribuer une configuration TCP/IP :
 - ⇒ Nous mettons le nom de domaine et les adresse IP des 2 serveurs **DNS** :

Nous définissons le réseau sur lequel nous voulons distribuer les adresses IP aux clients grâce à une étendue DHCP, prenant en compte l'adresse IP du serveur DNS Esclave pour tester, son masque et la passerelle par défaut :

- Nous essayons de démarrer le service « isc-dhcp-server » :

- Nous vérifions que celui-ci est bien démarré :

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

b) **Configuration pour les clients**

Pour un client DHCP Windows :

 Nous retournons sur le serveur DNS Maître, nous nous rendons dans le fichier « /etc/bind/named.conf.local » et ajoutons cette nouvelle ligne (en jaune) avec l'adresse IP du serveur DHCP pour permettre la mise à jour des zones DNS :

```
GNU nano 2.2.6 Fichier : /etc/bind/named.conf.local
notify yes;
allow-transfer {192.168.1.133;};
allow-update {192.168.1.135;};
};
zone "1.168.192.in-addr.arpa" IN {
type master;
file "/var/cache/bind/rev.ettori.local";
notify yes;
allow-transfer {192.168.1.133;};
allow-update {192.168.1.135;};
};
```

 Nous nous rendons sur le serveur DHCP et dans le fichier « /etc/dhcp/dhcpd.conf » et ajoutons au début de ce fichier, ces lignes qui permettent d'activer la mise à jour des clients DHCP avec le DNS :

Nous ajoutons ces nouvelles lignes à la fin de ce fichier où dans l'attribut « primary » pour les 2 zones (directe et inversée), nous mettons l'adresse IP du serveur DNS Maître :

```
zone ettori.local. {primary 192.168.1.132;}
zone 1.168.192.in–addr.arpa. {primary 192.168.1.132;}
```

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

Pour un client DHCP Linux :

- Nous nous rendons dans le fichier « **/etc/dhcp/dhclient.conf** » et remplaçons cette ligne par le nom d'un **client Linux** :

- Enfin, nous redémarrons les services « **bind9** » et « **isc-dhcp-server** » pour prendre en compte les modifications :

root@DNSMa root@DNSMa	itre:~# itre:~#	systemct —	l restart	bind9.se	rvice
oot@DHCP:~# oot@DHCP:~#	systemc —	tl restar	∿t isc−dho	≎p-server.	service

VIII) <u>Tests sur les clients</u>

- Sur le client Windows, nous pouvons voir la nouvelle configuration TCP/IP :

Carte Ethernet Connexion au réseau local :	
Suffixe DNS propre à la connexion : et Adresse IPv4	tori.local 2.168.1.133 5.255.255.0 2.168.1.254
Carte Tunnel isatap.ettori.local :	
Statut du média	dia déconnecté tori.local

- Sur le client Linux, nous vérifions la même chose :

root@clien	itDHC	P:~#	ifc	onf	ig									
eth0	Link	enca	ip:E	the	rnet	t I	HWa	ddr	08	:00	:27	:e	4:4	0:6f
	inet	adr:	192	.16	8.1.	.13	4	Вса	st:	192	.16	8.	1.2	55
	adr	inete	i: f	e80	::a(:00	27f	f:f	ee4	:40	6f/	64	Sci	ope:
	adr	inet∈	i: f	d23	:650)7:	b29	b:1	:a0	0:2	7ff	:f	ee4	:406
	UP B	ROADC	:AST	RUI	NNIM	١G	MUL	TIC	AST	М	тυ:	15	00	Met
	RX p	acket	s:5	380	err	ror	s:0	dr	opp	ed:	0 о	ve	rru	ns:O
	ТХ р	acket	s:2	98 (erro	ors	:0	dro	ppe	d:0	ΟV	er	run	s:0
	coll	isior	is:0	lg	fi	le	tra	nsm	iss	ion	:10	00		
	RX b	ytes:	441	579	(43	31.	2 K	iB)	Т	Хb	yte	s:	454	68 (

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

- Pour confirmer, nous nous rendons dans « /var/lib/dhcp/dhcpd.leases » pour visualiser les baux DHCP attribués sur les 2 clients :
 - ⇒ <u>Client Windows</u> :

```
lease 192.168.1.133 {
   starts 4 2016/10/13 09:32:35;
   ends 4 2016/10/13 09:42:35;
   cltt 4 2016/10/13 09:32:35;
   binding state active;
   next binding state free;
   rewind binding state free;
   hardware ethernet 08:00:27:7d:e9:d9;
   uid "\001\010\000'}\351\331";
   set ddns-txt = "31abd7ab87e02fa9cebfae50cffcca355d";
   set ddns-fwd-name = "DHCPClient.ettori.local";
   client-hostname "DHCPClient";
```

⇒ <u>Client Linux</u> :

0111 ----- 0 0

```
lease 192.168.1.134 {
   starts 4 2016/10/13 09:46:15;
   ends 4 2016/10/13 09:56:15;
   cltt 4 2016/10/13 09:46:15;
   binding state active;
   next binding state free;
   rewind binding state free;
   hardware ethernet 08:00:27:e4:40:6f;
   set ddns-txt = "005c0c1684b2cbb0c7ef2725804517a729";
   set ddns-fwd-name = "clientDHCP.ettori.local.ettori.local";
   client-hostname "clientDHCP.ettori.local";
```

Nous constatons que les clients **DHCP** reçoivent bien leurs configurations TCP/IP automatiquement.

- Nous pouvons consulter les logs pour vérifier :

្រា	<u> 1 U I</u>	<u>ianu 2.2.</u> 0)	FICHIC	sr • /var/iug/sysiug
Oct	13	11:32:07	DNSMaitre	dhcpd:	DHCPOFFER on 192.168.1.134 to 08:00:27:5d:15:
Oct	13	11:32:07	DNSMaitre	dhcpd:	DHCPREQUEST for 192.168.1.109 (192.168.1.111)
Oct	13	11:32:16	DNSMaitre	dhcpd:	DHCPDISCOVER from 08:00:27:3d:fb:65 via eth0:
Oct	13	11:32:16	DNSMaitre	dhcpd:	DHCPREQUEST for 192.168.1.3 (192.168.1.254) f
Oct	13	11:32:20	DNSMaitre	dhcpd:	DHCPDISCOVER from 08:00:27:5d:15:aa (clientli
Oct	13	11:32:20	DNSMaitre	dhcpd:	DHCPOFFER on 192.168.1.134 to 08:00:27:5d:15:
Oct	13	11:32:20	DNSMaitre	dhcpd:	DHCPREQUEST for 192.168.1.109 (192.168.1.111)
Oct	13	11:32:30	DNSMaitre	dhcpd:	DHCPRELEASE of 192.168.1.133 from 08:00:27:7c
Oct	13	11:32:30	DNSMaitre	dhcpd:	Removed forward map from DHCPClient.ettori.lc
Oct	13	11:32:30	DNSMaitre	dhcpd:	Removed reverse map on 133.1.168.192.in-addr.
Oct	13	11:32:33	DNSMaitre	dhcpd:	DHCPDISCOVER from 08:00:27:5d:15:aa (clientli
Oct	13	11:32:33	DNSMaitre	dhcpd:	DHCPOFFER on 192.168.1.134 to 08:00:27:5d:15:
Oct	13	11:32:33	DNSMaitre	dhcpd:	DHCPREQUEST for 192.168.1.109 (192.168.1.111)
Oct	13	11:32:34	DNSMaitre	dhcpd:	DHCPDISCOVER from 08:00:27:7d:e9:d9 via eth0
Oct	13	11:32:35	DNSMaitre	dhcpd:	DHCPOFFER on 192.168.1.133 to 08:00:27:7d:e9:
Oct	13	11:32:35	DNSMaitre	dhcpd:	DHCPREQUEST for 192.168.1.133 (192.168.1.135)
Oct	13	11:32:35	DNSMaitre	dhcpd:	DHCPACK on 192.168.1.133 to 08:00:27:7d:e9:d9
Oct	13	11:32:35	DNSMaitre	dhcpd:	Added new forward map from DHCPClient.ettori.
Oct	13	11:32:35	DNSMaitre	dhcpd:	Added reverse map from 133.1.168.192.in-addr.
Oct	13	11:32:37	DNSMaitre	dhcpd:	DHCPDISCOVER from 08:00:27:e9:85:b1 via eth0:

ETTORI Bastien	BTS SIO 2 ^{ème} année
29 Septembre 2016	Année scolaire : 2016/2017
Option : SISR	Version 1

- Nous pouvons également consulter les logs via l'utilitaire « Putty » :

G	GNU nano 2.2.6				Fichier : /var/log/syslog
Oct	13	11:45:41	DNSMaitre	dhcpd:	DHCPDISCOVER from 08:00:27:e4:40:6f via eth0
Oct	13	11:45:41	DNSMaitre	dhcpd:	DHCPREQUEST for 192.168.1.103 (192.168.1.102) from 08:00:27:e4:40:6f via eth0: un
Oct	13	11:45:42	DNSMaitre	dhepd:	DHCPOFFER on 192.168.1.134 to 08:00:27:e4:40:6f (clientDHCP.ettori.local) via eth
Oct	13	11:46:03	DNSMaitre	dhcpd:	DHCPDISCOVER from 08:00:27:43:6d:de via eth0: network 192.168.1.0/24: no free lea
Oct	13	11:46:03	DNSMaitre	dhcpd:	DHCPREQUEST for 192.168.1.25 (192.168.1.254) from 08:00:27:43:6d:de via eth0: unk
Oct	13	11:46:15	DNSMaitre	dhcpd:	DHCPDISCOVER from 08:00:27:e4:40:6f (clientDHCP.ettori.local) via eth0
Oct	13	11:46:15	DNSMaitre	dhcpd:	DHCPOFFER on 192.168.1.134 to 08:00:27:e4:40:6f (clientDHCP.ettori.local) via eth
Oct	13	11:46:15	DNSMaitre	dhepd:	DHCPREQUEST for 192.168.1.134 (192.168.1.135) from 08:00:27:e4:40:6f (clientDHCF.
Oct	13	11:46:15	DNSMaitre	dhcpd:	DHCPACK on 192.168.1.134 to 08:00:27:e4:40:6f (clientDHCP.ettori.local) via eth0
Oct	13	11:46:15	DNSMaitre	dhcpd:	Added new forward map from clientDBCP.ettori.local.ettori.local to 192.168.1.134
Oct	13	11:46:15	DNSMaitre	dhend:	Added reverse map from 134.1.168.192.in-addr.arpa, to clientDNCP.ettori.local.ett

Ici, nous voyons l'ajout des 2 zones DNS aux 2 clients DHCP.

Enfin, nous pouvons constater que les fichiers de zones DNS répliqués avec l'extension
 « .jnl » ont été créés automatiquement sur le serveur DNS Maître :

```
oot@DNSMaitre:~# ls –l /var/cache/bind/
otal 40
rw-r--r-- 1 bind bind
                                   13 11:40 db.ettori.local
                         551 oct.
-rw-r--r-- 1 bind bind 14400 oct.
                                   13 11:46 db.ettori.local.jnl
-rw-r--r-- 1 bind bind
                                   13 09:23 managed-keys.bind
                         720 oct.
-rw-r--r-- 1 bind bind
                         528 oct.
                                   13 11:41 rev.ettori.local
-rw-r--r-- 1 bind bind 10738 oct.
                                   13 11:46 rev.ettori.local.jn
root@DNSMaitre:~#
```

IX) <u>Conclusion</u>

En conclusion, nous pouvons dire que les 2 serveurs **DNS** et le serveur **DHCP** pour le **DNS dynamique** sont fonctionnels car les clients **Linux** et **Windows** reçoivent bien leurs configurations TCP/IP dynamiquement et que les fichiers de zones sont mis à jour automatiquement.