Réseau Privé Virtuel et WIFI.

Présentation :

Un Réseau privé virtuel appelé VPN est un système permettant de créer un lien direct entre des ordinateurs distants. On utilise notamment ce terme dans le travail à distance, ainsi que pour l'accès à des structures de type cloud computing. Un VPN permet d'accéder à des ordinateurs distants comme si l'on était connecté au réseau local. On peut ainsi avoir un accès au réseau interne (réseau d'entreprise, par exemple).

Un VPN dispose généralement aussi d'une passerelle permettant d'accéder à l'extérieur, ce qui permet de changer l'adresse IP source apparente de ses connexions. Cela rend plus difficile l'identification et la localisation approximative de l'ordinateur émetteur par le fournisseur de service.

Objectif :

Installer et configurer un VPN avec le logiciel libre OpenVPN. Mise en place d'une borne WIFI avec deux SSID différents.

Pré requis :

- → Deux ordinateurs un sur Linux pour le serveur (Debian 8.2) et un sur Windows pour le client (W7).
- ➔ Avoir une connexion internet
- → Avoir une IP fixe pour le serveur
- ➔ Mon serveur s'appelle openvpn et son @IP est 192.168.1.140/24. Le client est en dhcp sur le même réseau que le serveur.

Sommaire :

- I. Installation d'OpenVPN
- II. Construction d'une PKI
- III. Configuration du serveur
- IV. Configuration Client VPN
- V. Configuration de la borne WIFI Cisco 1200 Series

I. Installation d'OpenVPN

Avant l'installation, mettre à jour les paquets :

root@openvpn:~# apt–get update

Puis installer les paquets :

root@openvpn:~# apt-get install openvpn openssh-server openssl

OpenVPN utilise les protocoles TLS et SSL et écoute sur les ports UDP ou TCP.

II. Construction d'une PKI

On va créer deux répertoires et copier les scripts dans ce repértoire :

```
root@openvpn:~# mkdir /etc/openvpn/easy–rsa
root@openvpn:~# cp /usr/share/easy–rsa/* /etc/openvpn/easy–rsa/
root@openvpn:~# mkdir /etc/openvpn/easy–rsa/keys
```

On va se situer dans le répertoire où il y a les scripts :

root@openvpn:~# co	d ∕etc∕openvpn⁄easy	j−rsa/	
root@openvpn:/etc/	∕openvpn∕easy–rsa#_	ls	
build-ca	build-key-server	list-crl	sign-req
build-dh	build-req	openssl–0.9.6.cnf	vars
build-inter	build-req-pass	openssl–0.9.8.cnf	whichopensslcnf
build-key	clean-all	openssl–1.0.0.cnf	
build-key-pass	inherit–inter	pkitool	
build-key-pkcs12	keys	revoke-full	

On va éditer le fichier vars et modifier ces valeurs :

root@openvpn:/etc/openvpn/easy–rsa# source ./vars NOTE: If you run ./clean–all, I will be doing a rm –rf on /etc/openvpn/easy–rsa/ keys root@openvpn:/etc/openvpn/easy–rsa# ./clean–all

On tape cette commande pour générer deux certificats CA:

root@openvpn:/etc/openvpn/easy-rsa# ./build-ca

Ces certificats sont présents maintenant dans le dossier keys :

root@openvpn:/etc/openvpn/easy–rsa# ls keys/ <mark>ca.crt ca.key</mark> index.txt serial

Maintenant, on va créer le certificat du serveur, 3 commandes à faire :

root@openvpn:/etc/openvpn/easy–rsa# echo 01 > keys/serial root@openvpn:/etc/openvpn/easy–rsa# chmod –R 0700 keys/

On peut lancer la commande maintenant :

root@openvpn:/etc/openvpn/easy-rsa# ./build-key-server serveurvpn

Important, répondre yes (y) aux deux questions qui suivent :

Certificate is to be certified until May 31 07:04:54 2026 GMT (3650 days) Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y Write out database with 1 new entries Data Base Updated

On fait le certificat du client maintenant et toujours répondre y (Yes) aux deux dernières questions :

root@openvpn:/etc/openvpn/easy–rsa# ./build–key client1

NB : sur le client même, il lui faut le ca.cert.

Enfin, on va générer les paramètres Diffie Hellman. Cela dure un assez long moment et le fichier crée est nommé dh2048.pem dans le sous répertoire keys :

root@openvpn:/etc/openvpn/easy_rsa# ./build-dh

III. Configuration du serveur

On va créer un utilisateur spécial openvpn et son groupe sans répertoire ni shell :

root@openvpn:/# groupadd openvpn root@openvpn:/# useradd –d /dev/null –g openvpn –s /bin/false openvpn Puis, on va récupérer le fichier de conf du serveur :

root@openvpn:/# cp /usr/share/doc/openvpn/examples/sample–config–files/server.co nf.gz /etc/openvpn/ root@openvpn:/# gunzip /etc/openvpn/server.conf.gz

On l'édite et on le modifie comme suit:

IV. Configuration du client Windows.

Installer le client VPN windows via le site : <u>openvpn-2.0.9-gui-1.0.3-install.exe</u>

De plus, on copie le fichier de conf par défaut présent dans :

C:\Program Files\OpenVPN\Sample-config\clientopvn dans le sous repertoire config

Mettez dans le répertoire config le ca.crt, le client1.crt et le client1.key disponible dans le keys :

root@ope	envpn:/etc/ope	nvpn∕easy−rsa# cd ke	eys/	
root@ope	envpn:/etc/ope	nvpn/easy-rsa/keys#	ls	
01.pem	client1.crt	index.txt	serial	serveurvpn.key
02.pem	client1.csr	index.txt.attr	serial.old	
ca.crt	client1.key	index.txt.attr.old	serveurvpn.crt	
ca.key	dh2048.pem	index.txt.old	serveurvpn.csr	

Ce qui nous donne ceci :

 Windows 7 SIO (C:) 	 Program Files (x86) 	OpenVPN 🕨 config		
s la bibliothèque 🔻	Partager avec 👻 🛛 Gra	aver Nouveau dos	sier	
Nom	<u> </u>	Modifié le	Туре	Taille
🔄 ca		17/11/2015 15:13	Certificat de sécur	2 Ko
🏡 client.ovpn		17/11/2015 17:03	OpenVPN Config	4 Ko
🔄 client1		17/11/2015 15:41	Certificat de sécur	6 Ko
client1.key		17/11/2015 15:41	Fichier KEY	2 Ko
README		17/11/2015 16:43	Document texte	1 Ko

On démarre le serveur openvpn : service openvpn start

Sur le windows, on remarque avec un clic droit en bas à droit puis on se connecte. Sur le serveur, le tun s'est créé :

- GN	∖U na	no	2.2.6	F	ichier : /etc/openvpn/openvpn.log
Eri	Nov	20	14:17:31	2015	OpenVPN 2.3.4 x86_64-pc-linux-gnu [SSL (OpenSSL)] [LZO\$
Fri	Nov	20	14:17:31	2015	library versions: OpenSSL 1.0.1k 8 Jan 2015, LZO 2.08
Fri	Nov	20	14:17:31	2015	NOTE: your local LAN uses the extremely common subnet \$
Fri	Nov	20	14:17:31	2015	Diffie–Hellman initialized with 2048 bit key
Fri	Nov	20	14:17:31	2015	Socket Buffers: R=[212992->131072] S=[212992->131072]
Fri	Nov	20	14:17:31	2015	ROUTE_GATEWAY 192.168.1.254/255.255.255.0 IFACE=eth0 H\$
Fri	Nov	20	14:17:31	2015	TUN/TAP device tun0 opened
Fri	Nov	20	14:17:31	2015	TUN/TAP TX queue length set to 100
Fri	Nov	20	14:17:31	2015	<pre>do_ifconfig, tt->ipv6=0, tt->did_ifconfig_ipv6_setup=0</pre>
Fri	Nov	20	14:17:31	2015	/sbin/ip link set dev tun0 up mtu 1500
Fri	Nov	20	14:17:31	2015	/sbin/ip addr add dev tun0 local 10.8.0.1 peer 10.8.0.2
Fri	Nov	20	14:17:31	2015	/sbin/ip route add 10.8.0.0/24 via 10.8.0.2

Avec la commande ifconfig, le tunnel est bien crée :

tun0 -00	Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-
	inet adr:10.8.0.1 P-t-P:10.8.0.2 Masque:255.255.255.255 UP POINTOPOINT RUNNING NOARP MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 lg file transmission:100 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

V. Configuration de la borne wifi Cisco 1200 series

Tout d'abord, il faut se connecter en console et mettre une adresse sur l'interface BV pour ainsi sur l'interface graphique. De plus, j'ai configuré SSH pour pouvoir me connecter à distance sur l'AP :

J'ai ensuite configuré les VLANs depuis l'interface graphique « Services » puis « VLAN ». Puis pour le chiffrement, je suis allé dans l'onglet Security puis « Encryption Manager » :

Security: Encryption Manager								
Set Encryption Mode and Keys for VLAN:		5 •	Define VLANs					
Encryption Modes								
None								
WEP Encryption	Optional •	Cisco Compliant TKIP Features: 🔲 Enable Message Integrity Check (MIC)						
Cipher	TKIP + WEP 40 bit •	Enable Per Packet Keying (PPK)						

Enfin, j'ai déclaré les deux SSID depuis « SSID Manager ». On a un récapitulatif des SSID crées dans l'onglet « Express Security »

Service Set Identifiers (SSIDs)						
SSID	VLAN	Radio	BSSID/Guest Mode	Open	Shared	Network EAP
GUEST	5	Radio0-802.11G	001b.548e.6ef0 🗸	no addition		
STURSULE	10	Radio0-802.11G	001b.548e.6ef1 🗸	no addition		

Comme dans l'onglet « Security » :

VLAN Encryption Mode	Examples Made	v	WEP		Cipher			Key Detetion		
	Encryption mode	MIC	РРК	TKIP	WEP40bit	WEP128bit	CKIP	CMIC	AES CCM	Key Rotation
5	Cipher			1	1					
10	Cipher			1						

Enfin, depuis un appareil mobile, on distingue bien les deux réseaux :

Orange F		♥ "□" 🔶	at (55 % +	10:33			
÷	Wi-Fi			Q	:			
	Activé							
	GUEST Connecté							
	STURSULE		•					
APSTURS#sh	run							
Building config	guration							
no service pac	1							
service timest	amps debug datetime	e msec						
service timest	amps log datetime m	sec						
hostname APS								
enable secret	5 \$1\$dKpB\$D2OORD	IOUIHbGaFsRCS	ua0					
ip subnet-zero								
ip domain name fwl.com								
ip name-serve	er 10.103.0.5							
ip ssh version	2							
no aaa new-m	odel							
dot11 vlan-na	me guest vlan 10							

dot11 vlan-name stursule vlan 20 dot11 ssid GUEST vlan 5 authentication open guest-mode mbssid guest-mode dot11 ssid STURSULE vlan 10 authentication open authentication key-management wpa mbssid guest-mode wpa-psk ascii 7 02160D5E19140A2C4D5C001C username Cisco password 7 112A1016141D username root password 7 081343411D485744 bridge irb interface Dot11Radio0 ip address 192.168.1.137 255.255.255.0 no ip route-cache encryption vlan 10 mode ciphers tkip encryption vlan 5 key 1 size 40bit 7 DD5A59824B7D transmit-key encryption vlan 5 mode ciphers tkip wep40 ssid GUEST ssid STURSULE mbssid speed basic-1.0 basic-2.0 basic-5.5 6.0 9.0 basic-11.0 12.0 18.0 24.0 36.0 48.0 54.0 station-role root interface Dot11Radio0.5 encapsulation dot1Q 5 native no ip route-cache

bridge-group 1 bridge-group 1 subscriber-loop-control bridge-group 1 block-unknown-source no bridge-group 1 source-learning no bridge-group 1 unicast-flooding bridge-group 1 spanning-disabled interface Dot11Radio0.10 encapsulation dot1Q 10 no ip route-cache bridge-group 10 bridge-group 10 block-unknown-source no bridge-group 10 source-learning no bridge-group 10 unicast-flooding bridge-group 10 spanning-disabled interface Dot11Radio0.15 encapsulation dot1Q 15 no ip route-cache bridge-group 15 bridge-group 15 subscriber-loop-control bridge-group 15 block-unknown-source no bridge-group 15 source-learning no bridge-group 15 unicast-flooding bridge-group 15 spanning-disabled interface Dot11Radio0.20 encapsulation dot1Q 20 no ip route-cache bridge-group 20 bridge-group 20 subscriber-loop-control bridge-group 20 block-unknown-source

no bridge-group 20 source-learning no bridge-group 20 unicast-flooding bridge-group 20 spanning-disabled interface Dot11Radio0.25 encapsulation dot1Q 25 no ip route-cache bridge-group 25 bridge-group 25 subscriber-loop-control bridge-group 25 block-unknown-source no bridge-group 25 source-learning no bridge-group 25 unicast-flooding bridge-group 25 spanning-disabled interface FastEthernet0 ip address 192.168.1.139 255.255.255.0 no ip route-cache duplex auto speed auto hold-queue 160 in interface FastEthernet0.5 encapsulation dot1Q 5 native no ip route-cache bridge-group 1 no bridge-group 1 source-learning bridge-group 1 spanning-disabled interface FastEthernet0.10 encapsulation dot1Q 10 no ip route-cache bridge-group 10 no bridge-group 10 source-learning

bridge-group 10 spanning-disabled interface FastEthernet0.15 encapsulation dot1Q 15 no ip route-cache bridge-group 15 no bridge-group 15 source-learning bridge-group 15 spanning-disabled interface FastEthernet0.20 encapsulation dot1Q 20 bridge-group 20 no bridge-group 20 source-learning bridge-group 20 spanning-disabled interface FastEthernet0.25 encapsulation dot1Q 25 no ip route-cache bridge-group 25 no bridge-group 25 source-learning bridge-group 25 spanning-disabled interface **BVI1** ip address 192.168.1.138 255.255.255.0 no ip route-cache ip default-gateway 192.168.1.254 ip http server control-plane line con 0 line vty 0 4 login local transport input ssh end

