ETTORI Bastien	BTS SIO 1 ^{ère} année
14 avril 2015	Année scolaire : 2014/2015
Option : SISR	Version 1.0

ROUTAGE STATIQUE

SOMMAIRE :

I)	Objectif	2
II)	Prérequis	2
III)	Définition	2
IV)	Configuration des routeurs	2-4
	a) Configuration du premier routeur (R1)	2-3
	b) Configuration du second routeur (R2)	.3-4
V)	Test de communication entre les routeurs	5
VI)	Conclusion	5

ETTORI Bastien	BTS SIO 1 ^{ère} année
14 avril 2015	Année scolaire : 2014/2015
Option : SISR	Version 1.0

I) <u>Objectif</u>

Dans cette procédure, nous allons montrer comment mettre en place le routage statique sur Cisco.

II) <u>Prérequis</u>

Pour réaliser cette procédure, nous avons besoin des éléments suivants :

Logiciel utilisé	Version du logiciel	Nombre de routeurs	Réseau IP	Réseau du routage
Cisco Packet Tracer	6.0	2 routeurs Cisco	192.168.1.0	200.100.100.0

Pour mettre en œuvre ce routage, nous allons nous appuyer sur le schéma ci-dessous :

III) <u>Définition</u>

Le routage statique est un routage mis en place par l'administrateur du réseau qui permet définir le chemin que doit emprunter un paquet afin qu'il puisse atteindre sa destination. Il doit gérer toutes les routes créées de chaque unité de routage du réseau. Ces routes statiques sont utilisées pour des raisons de sécurité en cas de dysfonctionnement.

IV) <u>Configuration des routeurs</u>

Nous devons d'abord configurer les interfaces séries sur chaque routeur en les activant en « **On** » et attribuer leur adresse IP respective au schéma. Ensuite, nous pouvons créer les routes.

a) Configuration du premier routeur (R1)

- Tout d'abord, nous devons configurer l'interface série sur le routeur en cochant la case « **On** » et attribuer l'adresse IP indiquée sur le schéma :

ETTORI Bastien	BTS SIO 1 ^{ère} année
14 avril 2015	Année scolaire : 2014/2015
Option : SISR	Version 1.0

R				R1		
Physical	Config	CLI				
GL	OBAL	\wedge				
Se	ttings			Ser	ial0/0/0	
Algorith	m Settings					
ROL	JTING		Port Status			✓ On
S	tatic					
F	RIP		Clock Rate			2000000 -
SWIT	CHING					2000000
VLAN [Database		Dupley			Eull Dupley
INTE	RFACE		Duplex			I di Dupiex
FastEth	nernet0/0				200 100 100 1	
FastEth	nernet0/1		IP Address		200.100.100.1	
Seria	al0/0/0		Subnet Mask		255.255.255.0	
Seria	al0/0/1					
			Tx Ring Limit		10	

- Ensuite, nous renommons le routeur 1 et nous configurons la route entre les 2 routeurs pour permettre la communication entre les 2 routeurs en tapant les commandes suivantes :

```
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#hos
Router(config)#hostname R1
R1(config)#ip route 192.168.1.0 255.255.255.0 200.100.100.2
R1(config)#
```

Ensuite, nous tapons la commande « **show ip route** » pour visualiser la table de routage et

```
Rl#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
S 192.168.1.0/24 [1/0] via 200.100.100.2
C 200.100.100.0/24 is directly connected, Serial0/0/0
R1#
```

Donc, nous voyons bien que la route a été créée notée d'un « S » pour Static.

ETTORI Bastien	BTS SIO 1 ^{ère} année
14 avril 2015	Année scolaire : 2014/2015
Option : SISR	Version 1.0

b) Configuration du second routeur (R2)

Q	3				R2		>
	Physical Co	onfig	CLI				
	GLOBAL	-	\sim				
	Settings	;		Serial0/0/0			
	Algorithm Set	ttings					
	ROUTING	G		Port Status			🗹 On
	Static						
	RIP			Clock Rate			2000000 -
	SWITCHIN	NG					
	VLAN Datab	ase		Dupley			Eull Dupley
	INTERFA	CE					I di Dupicx
	FastEtherne	t0/0		ID Addross		200 100 100 2	
	FastEtherne	t0/1		IP Address		200.100.100.2	
	Serial0/0/	/0		Subnet Mask		255.255.255.0	
	Serial0/0/	/1					
				Tx Ring Limit		10	

- Ensuite, nous renommons le routeur 2 et nous configurons la route entre les 2 routeurs pour permettre la communication entre les 2 routeurs en tapant les commandes suivantes :

```
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)#ho
Router(config)#hostname R2
R2(config)#ip route 192.168.1.0 255.255.255.0 200.100.100.1
R2(config)#
```

- Ensuite, nous tapons la commande « **show ip route** » pour visualiser la table de routage :

```
R2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
Gateway of last resort is not set
S 192.168.1.0/24 [1/0] via 200.100.100.1
C 200.100.100.0/24 is directly connected, Serial0/0/0
R2#
```

Donc, nous constatons que la route a été créée.

ETTORI Bastien	BTS SIO 1 ^{ère} année
14 avril 2015	Année scolaire : 2014/2015
Option : SISR	Version 1.0

V) <u>Test de communication entre les routeurs</u>

- Ensuite, nous devons vérifier si les routes créées communiquent entre elles en saisissant un « **ping** » des 2 adresses IP des routeurs :

⇒ <u>Communication entre les routeurs 1 et 2</u> :

```
R1#ping 200.100.100.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.100.100.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 3/4/8 ms
```

⇒ <u>Communication entre les routeurs 2 et 1</u> :

```
R2#ping 200.100.100.1
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.100.100.1, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 3/4/7 ms
```

Donc, nous voyons bien que les routes communiquent bien entre elles.

VI) <u>Conclusion</u>

En conclusion, nous pouvons constater que le routage statique est opérationnel et qu'il permet bien de faire fonctionner 2 ou plusieurs routeurs entre eux.