
2026/02/18 18:40 1/6 Secure-UML

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Secure-UML

Secure-UML est une extension UML dont l'objectif est d'intégrer des aspects de sécurité directement dans les
modèles de systèmes logiciels.
Cette extension permet de définir des politiques de sécurité et des règles d'accès au niveau de la conception,
facilitant ainsi le développement de systèmes sécurisés dès les premières étapes du cycle de vie du logiciel.

Principes

Role-Based Access Control

Contrôle d'Accès Basé sur les Rôles (RBAC) :

Secure-UML utilise le modèle RBAC pour définir les permissions et les rôles des utilisateurs dans le système.

Le modèle RBAC associe les permissions aux rôles plutôt qu'aux individus, simplifiant la gestion des droits
d'accès.

Rôles

Regroupent les permissions en fonction des responsabilités des utilisateurs.

Permissions

Actions autorisées que les rôles peuvent effectuer sur les objets du système (ressources).

Diagrammes de Secure-UML

Secure-UML étend les diagrammes standard d'UML pour inclure des informations de sécurité.

Diagrammes de Classes Sécurisés

Incluent des annotations pour spécifier les permissions et les rôles associés aux classes et aux opérations.

Diagrammes de Cas d'Utilisation Sécurisés

Identifient les rôles et les permissions nécessaires pour chaque cas d'utilisation.

Éléments Clés de Secure-UML

Annotations de Sécurité

Utilisées pour enrichir les éléments UML avec des informations de sécurité.

Last update: 2024/06/05 01:31 cnam:nfe114:secureuml http://slamwiki2.kobject.net/cnam/nfe114/secureuml

http://slamwiki2.kobject.net/ Printed on 2026/02/18 18:40

Stereotypes

Ajoutent des informations de sécurité aux éléments UML.

Par exemple, un stéréotype « role » peut être utilisé pour annoter une classe comme représentant un rôle dans
le modèle RBAC.

Constraints

Règles qui spécifient les conditions de sécurité.

Par exemple, une contrainte peut définir que seulement certains rôles peuvent accéder à une méthode
particulière.

Modélisation des Politiques de Sécurité

Les politiques de sécurité sont définies en termes de permissions (opérations autorisées) et de rôles
(regroupements de permissions).

Définition des Rôles

Les rôles sont définis en fonction des responsabilités dans l'organisation.

Assignation des Permissions

Les permissions sont associées aux rôles plutôt qu'aux utilisateurs individuels.

Exemples

Gestion d'une bibliothèque :

Rôles :

Bibliothécaire : Un utilisateur avec le rôle de Bibliothécaire.
Membre : Un utilisateur avec le rôle de Membre.

Permissions :

Lecture : Inclut les actions de lire, emprunter et retourner des livres.
Modification : Inclut les actions d'ajouter, modifier et supprimer des livres.
Administration : Inclut l'action de gérer les emprunts.

Cas d'utilisation :

Lecture : Lire un livre, emprunter un livre, retourner un livre.
Modification : Ajouter un livre, modifier les informations sur un livre, supprimer un livre.

2026/02/18 18:40 3/6 Secure-UML

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Administration : Gérer les emprunts.

Dans ce diagramme, les rôles “Bibliothécaire” et “Membre” sont associés aux permissions appropriées.

Les permissions sont ensuite reliées aux cas d'utilisation correspondants, montrant comment les actions du
système sont contrôlées par les rôles et les permissions.

Secure Use case diagram

BibliothécaireMembre

LectureModificationAdministration

Lire un livreEmprunter un livreRetourner un livreAjouter un livreModifier les informations sur un livreSupprimer un livreGérer les emprunts

«hasPermission»«hasPermission»«hasPermission»«hasPermission»

«canDo»«canDo»«canDo»«canDo»«canDo»«canDo» «canDo»

Source

@startuml

!define ROLE Actor
!define PERMISSION Actor/ #pink;line:red;line.bold;text:red

' Définition des rôles
ROLE Bibliothécaire
ROLE Membre

' Définition des permissions
PERMISSION Lecture
PERMISSION Modification
PERMISSION Administration

' Acteurs (rôles) et leurs permissions
Bibliothécaire -down-> Lecture : <<hasPermission>>
Bibliothécaire -down-> Modification : <<hasPermission>>
Bibliothécaire -down-> Administration : <<hasPermission>>

Membre -down-> Lecture : <<hasPermission>>

' Cas d'utilisation du système
Lecture --> (Lire un livre) : <<canDo>>

Last update: 2024/06/05 01:31 cnam:nfe114:secureuml http://slamwiki2.kobject.net/cnam/nfe114/secureuml

http://slamwiki2.kobject.net/ Printed on 2026/02/18 18:40

Lecture --> (Emprunter un livre) : <<canDo>>
Lecture --> (Retourner un livre) : <<canDo>>
Modification --> (Ajouter un livre) : <<canDo>>
Modification --> (Modifier les informations sur un livre) : <<canDo>>
Modification --> (Supprimer un livre) : <<canDo>>
Administration --> (Gérer les emprunts) : <<canDo>>

@enduml

Secure Class Diagram

«AuthorizationConstraint»
context:read, return
pre:this.livres.contains(unLivre)

«role»Bibliothécaire«role»Membre

«permission»Lecture

read(unLivre): execute
return(unLivre): execute
borrow(unLivre):execute

«permission»Modification

add():execute
modify():execute
delete():execute

«permission»Administration

manage():execute

«Resource»Livre
title: String
author: String
ISBN: String
getDetails(): String

«Resource»Emprunt
startDate: Date
endDate: Date
isOverdue(): Boolean

«Resource»Bibliothèque

add(Livre):execute
modify(Livre):execute
delete(Livre):execute
borrow(livre: Livre, membre: Membre): Emprunt
return(emprunt: Emprunt): execute
manage(List<Emprunt>): execute

«hasPermission»«hasPermission»«hasPermission»«hasPermission»

«use» «canDo»«canDo»«canDo»«canDo»«canDo»«use» «canDo»«use»

Source

@startuml

!define ROLE Class
!define PERMISSION Class

' Définition des classes pour les rôles
ROLE Bibliothécaire <<role>>
ROLE Membre <<role>>

' Définition des permissions
PERMISSION Lecture <<permission>> {
 + read(): execute
 + return(): execute
 + borrow():execute
}

2026/02/18 18:40 5/6 Secure-UML

SlamWiki 2.1 - http://slamwiki2.kobject.net/

PERMISSION Modification <<permission>> {
 + add():execute
 + modify():execute
 + delete():execute
}
PERMISSION Administration <<permission>> {
 + manage():execute
}

' Association des rôles avec les permissions
Bibliothécaire -down-> Lecture : <<hasPermission>>
Bibliothécaire -down-> Modification : <<hasPermission>>
Bibliothécaire -down-> Administration : <<hasPermission>>

Membre -down-> Lecture : <<hasPermission>>

' Classes du système
class Livre <<Resource>> {
 +title: String
 +author: String
 +ISBN: String
 +getDetails(): String
}

class Emprunt <<Resource>> {
 +startDate: Date
 +endDate: Date
 +isOverdue(): Boolean
}

class Bibliothèque <<Resource>> {
 +add(Livre):execute
 +modify(Livre):execute
 +delete(Livre):execute
 +borrow(livre: Livre, membre: Membre): Emprunt
 +return(emprunt: Emprunt): execute
 +manage(List<Emprunt>): execute
}

' Permissions pour les méthodes de la classe Bibliothèque
Lecture --> Livre : <<use>>
Lecture --> Bibliothèque::borrow : <<canDo>>
Lecture --> Bibliothèque::return : <<canDo>>

Modification --> Bibliothèque::add : <<canDo>>
Modification --> Bibliothèque::remove : <<canDo>>
Modification --> Bibliothèque::modify : <<canDo>>
Modification --> Livre : <<use>>

Administration --> Bibliothèque::manage : <<canDo>>
Administration --> Emprunt : <<use>>

@enduml

Last update: 2024/06/05 01:31 cnam:nfe114:secureuml http://slamwiki2.kobject.net/cnam/nfe114/secureuml

http://slamwiki2.kobject.net/ Printed on 2026/02/18 18:40

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/cnam/nfe114/secureuml

Last update: 2024/06/05 01:31

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/cnam/nfe114/secureuml

	Secure-UML
	Principes
	Role-Based Access Control
	Rôles
	Permissions

	Diagrammes de Secure-UML
	Diagrammes de Classes Sécurisés
	Diagrammes de Cas d'Utilisation Sécurisés

	Éléments Clés de Secure-UML
	Annotations de Sécurité
	Stereotypes
	Constraints

	Modélisation des Politiques de Sécurité
	Définition des Rôles
	Assignation des Permissions

	Exemples
	Rôles :
	Permissions :
	Cas d'utilisation :
	Secure Use case diagram
	Source

	Secure Class Diagram
	Source

