2026/02/20 05:27 1/5 Secure-UML

Secure-UML

Secure-UML est une extension UML dont I'objectif est d'intégrer des aspects de sécurité directement dans les
modeles de systemes logiciels.

Cette extension permet de définir des politiques de sécurité et des régles d'acces au niveau de la conception,
facilitant ainsi le développement de systemes sécurisés des les premieres étapes du cycle de vie du logiciel.

Principes
Role-Based Access Control

Controle d'Acces Basé sur les Roles (RBAC) :
Secure-UML utilise le modele RBAC pour définir les permissions et les rdles des utilisateurs dans le systeme.

Le modele RBAC associe les permissions aux réles plutdt qu'aux individus, simplifiant la gestion des droits
d'acces.

Roles

Regroupent les permissions en fonction des responsabilités des utilisateurs.

Permissions

Actions autorisées que les roles peuvent effectuer sur les objets du systéme (ressources).
Diagrammes de Secure-UML

Secure-UML étend les diagrammes standard d'UML pour inclure des informations de sécurité.
Diagrammes de Classes Sécurisés

Incluent des annotations pour spécifier les permissions et les réles associés aux classes et aux opérations.
Diagrammes de Cas d'Utilisation Sécurisés

Identifient les rdles et les permissions nécessaires pour chaque cas d'utilisation.

Eléments Clés de Secure-UML

Annotations de Sécurité

Utilisées pour enrichir les éléments UML avec des informations de sécurité.

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2024/06/05 01:21 cnam:nfell4:secureuml http://slamwiki2.kobject.net/cnam/nfell4/secureuml?rev=1717543281

Stereotypes

Ajoutent des informations de sécurité aux éléments UML.

Par exemple, un stéréotype « role » peut étre utilisé pour annoter une classe comme représentant un role dans
le modele RBAC.

Constraints

Reégles qui spécifient les conditions de sécurité.

Par exemple, une contrainte peut définir que seulement certains réles peuvent accéder a une méthode
particuliere.

Modélisation des Politiques de Sécurité

Les politiques de sécurité sont définies en termes de permissions (opérations autorisées) et de roles
(regroupements de permissions).

Définition des Roles

Les réles sont définis en fonction des responsabilités dans I'organisation.
Assignation des Permissions

Les permissions sont associées aux roles plutét qu'aux utilisateurs individuels.

Exemples
Gestion d'une bibliothéque :

Roles :

¢ Bibliothécaire : Un utilisateur avec le role de Bibliothécaire.
e Membre : Un utilisateur avec le role de Membre.

Permissions :

e Lecture : Inclut les actions de lire, emprunter et retourner des livres.
¢ Modification : Inclut les actions d'ajouter, modifier et supprimer des livres.
e Administration : Inclut I'action de gérer les emprunts.

Cas d'utilisation :

e Lecture : Lire un livre, emprunter un livre, retourner un livre.
¢ Modification : Ajouter un livre, modifier les informations sur un livre, supprimer un livre.

http://slamwiki2.kobject.net/ Printed on 2026/02/20 05:27



2026/02/20 05:27 3/5 Secure-UML

e Administration : Gérer les emprunts.
Dans ce diagramme, les roles “Bibliothécaire” et “Membre” sont associés aux permissions appropriées.
Les permissions sont ensuite reliées aux cas d'utilisation correspondants, montrant comment les actions du

systeme sont contrblées par les roles et les permissions.

Secure Use case diagram

Bibliothécaire Membre

hasPermission: hasPermission «hasPermission» «<hasPermission»

Modification Administration

«canDo» «canDo»

Modifier les informations sur un livre Supprimer un livre Ajouter un livre @ Emprunter un livre
Source
@startuml

Ildefine ROLE Actor
Idefine PERMISSION Actor/ #pink;line:red;line.bold;text:red

' Définition des roles
ROLE Bibliothécaire
ROLE Membre

' Définition des permissions
PERMISSION Lecture
PERMISSION Modification
PERMISSION Administration

' Acteurs (rbles) et leurs permissions

Bibliothécaire -down-> Lecture : <<hasPermission>>
Bibliothécaire -down-> Modification : <<hasPermission>>
Bibliothécaire -down-> Administration : <<hasPermission>>

Membre -down-> Lecture : <<hasPermission>>

' Cas d'utilisation du systeme

Lecture --> (Lire un livre) : <<canDo>>

Lecture --> (Emprunter un livre) : <<canDo>>

Lecture --> (Retourner un livre) : <<canDo>>

Modification --> (Ajouter un livre) : <<canDo>>

Modification --> (Modifier les informations sur un livre) : <<canDo>>
Modification --> (Supprimer un livre) : <<canDo>>

Administration --> (Gérer les emprunts) : <<canDo>>

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2024/06/05 01:21

cnam:nfell4:secureuml http://slamwiki2.kobject.net/cnam/nfell4/secureuml?rev=1717543281

@enduml

Secure Class Diagram

«role»
Membre

«hasPermission»

«role»
Bibliothécaire

«hasPermission»

/

@ «permission»
Lecture

«permission»
Modification

«hasPermission»

o read(): execute

o return(): execute
o borrow():execute

o add():execute
o modify():execute
o delete():execute

«use» «use» [«canDo»

«canDo» «canDo» «canDo»

«hasPermission»

«permission»
Administration

© manage():execute

«canDo» «canDo» «use»

«Resource»

@ «Resource»
Bibliotheque

«Resource»

©

Livre

©

o title: String
o author: String
o ISBN: String

o getDetails(): String

o add(Livre):execute

o modify(Livre):execute

o delete(Livre):execute

o borrow(livre: Livre, membre: Membre): Emprunt
o return(emprunt: Emprunt): execute

Emprunt

o startDate: Date
o endDate: Date

o isOverdue(): Boolean

o manage(List<Emprunt>): execute

Source

@startuml

ldefine ROLE Class
!define PERMISSION Class

' Définition des classes pour les rdles
ROLE Bibliothécaire <<role>>
ROLE Membre <<role>>

' Définition des permissions
PERMISSION Lecture <<permission>> {
+ read(): execute
+ return(): execute
+ borrow() :execute
}
PERMISSION Modification <<permission>> {
+ add() :execute
+ modify():execute
+ delete() :execute
}
PERMISSION Administration <<permission>> {
+ manage() :execute

}

http://slamwiki2.kobject.net/ Printed on 2026/02/20 05:27



2026/02/20 05:27 5/5

Secure-UML

' Association des roles avec les permissions
Bibliothécaire -down-> Lecture : <<hasPermission>>
Bibliothécaire -down-> Modification : <<hasPermission>>
Bibliothécaire -down-> Administration : <<hasPermission>>

Membre -down-> Lecture : <<hasPermission>>

' Classes du systeme

class Livre <<Resource>> {
+title: String
+author: String
+ISBN: String
+getDetails(): String

}

class Emprunt <<Resource>> {
+startDate: Date
+endDate: Date
+isOverdue(): Boolean

}

class Bibliothéque <<Resource>> {
+add(Livre) :execute
+modify(Livre) :execute
+delete(Livre) :execute
+borrow(livre: Livre, membre: Membre): Emprunt
+return(emprunt: Emprunt): execute
+manage(List<Emprunt>): execute

}

' Permissions pour les méthodes de la classe Bibliotheque
Lecture --> Livre : <<use>>

Lecture --> Bibliothéque::borrow : <<canDo>>

Lecture --> Bibliotheéque::return : <<canDo>>

Modification --> Bibliothéque::add : <<canDo>>
Modification --> Bibliothéque::remove : <<canDo>>
Modification --> Bibliothéque::modify : <<canDo>>
Modification --> Livre : <<use>>

Administration --> Bibliotheéque::manage : <<canDo>>
Administration --> Emprunt : <<use>>

@enduml

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/cnam/nfell4/secureumi?rev=1717543281

Last update: 2024/06/05 01:21

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/cnam/nfe114/secureuml?rev=1717543281

	Secure-UML
	Principes
	Role-Based Access Control
	Rôles
	Permissions

	Diagrammes de Secure-UML
	Diagrammes de Classes Sécurisés
	Diagrammes de Cas d'Utilisation Sécurisés


	Éléments Clés de Secure-UML
	Annotations de Sécurité
	Stereotypes
	Constraints

	Modélisation des Politiques de Sécurité
	Définition des Rôles
	Assignation des Permissions

	Exemples
	Rôles :
	Permissions :
	Cas d'utilisation :
	Secure Use case diagram
	Source

	Secure Class Diagram
	Source





