
2026/01/09 17:39 1/6 Programmation fonctionnelle

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Programmation fonctionnelle

Basée sur l'utilisation des fonctions, à la condition de respecter certains principes.

La prog fonctionnelle n'admet pas le changement d'états et la mutation des données (contrairement à la prog
impérative).

Les langages fonctionnels sont ceux vouent un culte à ces principes ou sont basés sur eux :

Lisp (1958), Scheme (1975), Common Lisp (1984), Haskell (1987), OCaml (1996), Scala (2003),
PureScript (2013)…

Les langages de programmation impératifs acceptant le passage de fonctions en paramètres peuvent être
utilisés dans le cadre d'une approche fonctionnelle :

ECMAScript, Java, C#, PHP, Perl, Python, Ruby, Kotlin…

Effets de bord, changement d'états

La programmation fonctionnelle s'affranchit de façon radicale des effets secondaires (ou effets de bord) en
interdisant les opérations d'affectation (immutabilité).

Le paradigme fonctionnel n'utilise pas de machine à états pour décrire un programme, mais un emboîtement de
fonctions qui agissent comme des “boîtes noires” que l'on peut imbriquer les unes dans les autres.

Chaque boîte possédant plusieurs paramètres en entrée mais une seule sortie, elle ne peut sortir qu'une seule
valeur possible pour chaque n-uplet de valeurs présentées en entrée. De cette façon, les fonctions
n'introduisent pas d'effets de bord.

http://slamwiki2.kobject.net/_detail/cnam/utc503/declarative/pasted/20231106-191234.png?id=cnam%3Autc503%3Adeclarative%3Afonctionnelle

Last update: 2025/10/13 13:29 cnam:utc503:declarative:fonctionnelle http://slamwiki2.kobject.net/cnam/utc503/declarative/fonctionnelle

http://slamwiki2.kobject.net/ Printed on 2026/01/09 17:39

Exemples d'effets de bord (side effects) :

Modifier une variable globale ou la propriété d'un objet
Ecrire dans la console ou à l'écran
Ecrire ou lire dans un fichier
Communiquer avec un réseau
Communiquer avec un processus externe
Appeler une fonction qui a des effets de bord

Principes de la pf

Tous les exemples ci-dessous sont traités en javascript (ECMAScript).

Si vous ne connaissez pas Javascript : Learn JS in 5 minutes

1- fonctions pures

Une fonction est dite pure à la double condition :

Qu'une même série de paramètres d'entrée produise toujours le même résultat
Qu'elle ne produise pas d'effets de bord (side effects)

a- Utilisation de variables globales

Fonction impure :

let pi = 3.14 ;
const calculateArea = (radius) => radius * radius * pi;
calculateArea(10);// returns 314.0, ou autre chose si pi est modifié

Suppression de la variable globale **pi** pour la rendre pure :

let pi = 3.14;
const calculateArea = (radius, c) => radius * radius * c;
calculateArea(10, pi);// returns 314.0

Ou (plus logique), passage de **pi** en constante :

const PI = 3.14;
const calculateArea = (radius) => radius * radius * PI;
calculateArea(10);// returns 314.0

https://learnxinyminutes.com/docs/javascript/

2026/01/09 17:39 3/6 Programmation fonctionnelle

SlamWiki 2.1 - http://slamwiki2.kobject.net/

b- Influence du contexte

Exemples de fonctions impures :

Lecture de fichiers :

const charactersCounter = (text) => `Character count: ${text.length}`;

function analyzeFile(filename) {
 let fileContent = open(filename);
 return charactersCounter(fileContent);
}

Génération d'aléatoires :

function getRandomArbitrary(min, max) {
 return Math.random() * (max - min) + min;
}

c- Mutabilité

Exemple de fonction impure :

Modification de globale :

let counter = 1;
function increaseCounter(value) {
 counter = value + 1;
}
increaseCounter(counter);
console.log(counter);// 2

Rendue pure :

let counter = 1;
const increaseCounter = (value) => value + 1;
increaseCounter(counter);// 2
console.log(counter);// 1

Avantages :

Last update: 2025/10/13 13:29 cnam:utc503:declarative:fonctionnelle http://slamwiki2.kobject.net/cnam/utc503/declarative/fonctionnelle

http://slamwiki2.kobject.net/ Printed on 2026/01/09 17:39

Stabilité, prévisibilité
Testabilité (unitaire)
Réutilisation (sans effets de bord)

2- Immutabilité

Les données doivent être immutables, c'est-à-dire que leur valeur ne peut changer après initialisation.

Exemple d'itération avec variables mutables :

let values = [1, 2, 3, 4, 5];
let sumOfValues = 0;
for (let i = 0; i < values.length; i++) {
 sumOfValues += values[i];
}
sumOfValues // 15

Version immutable obtenue par récursion :

let list = [1, 2, 3, 4, 5];
let accumulator = 0;
function sum(list, accumulator) {
 if (list.length == 0) {
 return accumulator;
 }
 return sum(list.slice(1), accumulator + list[0]);
}
sum(list, accumulator); // 15
list; // [1, 2, 3, 4, 5]
accumulator; // 0

Avantages :

L'exécution d'un prog n'est plus dépendant des changements d'état

3- Transparence référentielle

Referential transparency

La transparence référentielle est obtenue grâce aux fonctions pures, et elle consiste à permettre le
remplacement d'un appel d'une fonction pure, par la valeur qu'elle retourne,sans perturber le fonctionnement
du programme.

Exemple :

Soit la fonction carré suivante :

2026/01/09 17:39 5/6 Programmation fonctionnelle

SlamWiki 2.1 - http://slamwiki2.kobject.net/

const square = (n) => n * n;

Pour la même valeur en entrée, cette fonction pure retournera toujours la même valeur :

square(2);// 4
square(2);// 4
square(2);// 4
// ...

Avec le paramètre 2, la fonction square retourne toujours 4. Il est donc possible deremplacer square(2) par 4
: Notre fonction est donc référentiellement transparente.

pure functions + immutable data = referential transparency

Grâce à ce concept, il est possible de memoïzer (https://en.wikipedia.org/wiki/Memoization) la
fonction, pour accroître les performances, en évitant son appel.

4- Fonction d'ordre supérieur

Fonctions objet de première classe ou Functions as first-class entities :

Une fonction est un type de données (callback) et peut-être passée en paramètre d'une fonction ou être
retournée par une fonction.

Les fonctions qui en manipulent d'autres sont qualifiées d'ordre supérieur.

Exemple :

Considérons les fonctions suivantes :

const doubleSum = (a, b) => (a + b) * 2;
const doubleSubtraction = (a, b) => (a - b) * 2;

Nous pourrions considérer que nous avons 3 fonctions :

somme
soustraction
double qui peut utiliser la soustraction, la somme ou toute autre opération

const
sum = (a, b) => a + b;
const subtraction = (a, b) => a - b;
const doubleOperator = (f, a, b) => f(a, b) * 2;

doubleOperator(sum, 3, 1);// 8
doubleOperator(subtraction, 3, 1);// 4

https://en.wikipedia.org/wiki/Memoization

Last update: 2025/10/13 13:29 cnam:utc503:declarative:fonctionnelle http://slamwiki2.kobject.net/cnam/utc503/declarative/fonctionnelle

http://slamwiki2.kobject.net/ Printed on 2026/01/09 17:39

doubleOperator est une fonction d'ordre supérieur.

5- Monades

Structure permettant de manipuler des langages fonctionnels purs dans des traits impératifs.

Exemples :

Result may or may not exist: solved by the Maybe monad.
Nondeterministic number of result: solved by the List monad.
Outside world interaction: solved by the IO monad.
Eventual result: solved by the Promise/Future monad.
Dependence on state: solved by the State monad.
Errors: solved by the Error monad.

Applications

Exercices pratiques sur Coding game

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/cnam/utc503/declarative/fonctionnelle

Last update: 2025/10/13 13:29

https://www.codingame.com/playgrounds/2980/practical-introduction-tofunctional- programming-with-js/pure-functions
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/cnam/utc503/declarative/fonctionnelle

	Programmation fonctionnelle
	Effets de bord, changement d'états
	Principes de la pf
	1- fonctions pures
	a- Utilisation de variables globales
	Fonction impure :
	Suppression de la variable globale **pi** pour la rendre pure :
	Ou (plus logique), passage de **pi** en constante :

	b- Influence du contexte
	Lecture de fichiers :
	Génération d'aléatoires :

	c- Mutabilité
	Modification de globale :

	2- Immutabilité
	Exemple d'itération avec variables mutables :
	Version immutable obtenue par récursion :
	Avantages :

	3- Transparence référentielle
	4- Fonction d'ordre supérieur
	5- Monades

	Applications

