
2026/01/27 05:21 1/8 Programation logique

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Programation logique

PROLOG

Prolog (PROgrammer en LOGique, 1970, Robert A. Kowalski (Edinburgh) & Alain Colmerauer (Marseille)) est né
du besoin de pouvoir traiter la langue naturelle par ordinateur et, en particulier, la grammaire.

Télécharger et installer SWI Prolog

Faits

Créer un nouveau fichier (tests.pl) qui va constituer votre base de faits.

Les faits : « Jean aime Marie » ou « Anne aime Jean » sont traduits en Prolog par :

aime(jean, marie). % car Jean aime Marie
aime (paul , marie). % Paul est amoureux de Marie
aime (marie , paul). % et Marie aime Paul

Avec

le nom de la relation ou prédicat (débutant par une minuscule),1.
le/les arguments (ici « jean » et « marie ») séparés par une virgule, dans un ordre qui possède un sens2.
(qui est le sujet et le complément de l’action décrite),
le fait se termine par un point « . ».3.

Les espaces ne jouent pas de rôle et le % indique le début du commentaire. (Le commentaire peut aussi être
placé entre /* … */). Le nom de la relation (ici « aime ») dépend du programmeur / analyste.

Questions

Les questions permettent d'interroger la base de fait. Elles se posent dans la fenêtre d'exécution de Prolog.

http://slamwiki2.kobject.net/_detail/cnam/utc503/declarative/pasted/20231126-102923.png?id=cnam%3Autc503%3Adeclarative%3Aprolog
https://www.swi-prolog.org/download/stable

Last update: 2023/12/07 01:30 cnam:utc503:declarative:prolog http://slamwiki2.kobject.net/cnam/utc503/declarative/prolog

http://slamwiki2.kobject.net/ Printed on 2026/01/27 05:21

Charger votre base de connaissances avec le nom du fichier entre crochets :

[tests].

En Prolog, les questions débutent par le point d’interrogation suivi du nom de la relation et du/des argument(s)
(objet). On parle également de but pour désigner une question. Par exemple, on peut se poser la question de
savoir si « Est-ce que Jean aime Marie ? ». Cette question se traduit par :

?- aime(jean, marie).

Pour y répondre, l’interprète Prolog va essayer d’unifier la question posée avec un des faits de sa base de
connaissance. S’il réussit, il répond « Yes » et « No » dans le cas contraire.

Variables

Une variable commence par une Majuscule.

Les variables permettent d'introduire des inconnues, et sont utilisables dans les questions :

?- aime(jean, X).
X = marie
Yes

Il est possible d'obtenir les réponses suivantes, en utilisant le ; :

?- aime(jean, X).
X = marie ;
X = peche ;
No

http://slamwiki2.kobject.net/_detail/cnam/utc503/declarative/pasted/20231126-105616.png?id=cnam%3Autc503%3Adeclarative%3Aprolog

2026/01/27 05:21 3/8 Programation logique

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Dans un fait, une variable représente tout (quelque chose de quelconque) :

anne aime tout s'écrira :

aime(anne, _) % _ est une variable quelconque

Conjonctions

Soit la base de connaissances suivante :

aime(jean, peche).
aime(jean, marie).
aime(jean, paris).
aime(marie, paul).
aime(marie, paris).
aime(paul, marie).
aime(paul, biere).
aime(anne, bretagne).
roi(tintin, belgique).

Il est possible de vérifier la véracité simultannée de plusieurs faits avec un ET : , :

?- aime(jean, marie) , aime(marie, jean).
No

« Existe-t-il quelque chose que Jean et Paul aiment ? ».

?-aime(jean, X), aime(paul, X)

Règles

Les règles permettent de généraliser les faits, pour éviter d'avoir à saisir tous les faits dans la base de
connaissances.

Une règle correspond à une affirmation générale sur les objets et leurs relations.

Par exemple, on sait que « Paul aime tous ceux qui aiment la bière » que l’on écrit en Prolog comme suit :

aime(paul, X) :- aime(X, biere).

Et cette règle se compose :

d’une tête (aime(paul, X)) ;
du symbole « :- » pour indiquer le « SI » ;
d’un corps (aime(X, biere)) ;

Last update: 2023/12/07 01:30 cnam:utc503:declarative:prolog http://slamwiki2.kobject.net/cnam/utc503/declarative/prolog

http://slamwiki2.kobject.net/ Printed on 2026/01/27 05:21

et d’un « . » final

L’ensemble des règles possédant le même nom (foncteur) et le même nombre d’arguments (arité)
doivent se suivre dans votre programme (elles doivent former un paquet de clauses).

Soient les règles suivantes :

« Anne aime tous les rois ».
« Arthur aime ceux qui l’aiment ».
« Jean aime toutes les femmes ».
« Paul aime les gens qui aiment la biere et Londres ».
« Il faut taxer les riches ».
« Marie aime toutes les villes ».

Elles s'écriront en Prolog :

aime(anne, UnRoi) :- roi(UnRoi, Pays).
aime(arthur, X) :- aime(X, arthur).
aime(jean, X) :- femme(X).
aime(paul, X) :- aime(X, biere), aime(X, londres).
taxer(UnePersonne) :- riche(UnePersonne).
aime(marie, UneVille) :- ville(UneVille).

Exercices

Soit la base de connaissances :

masculin(hubert).
masculin(denis).
masculin(robert).
masculin(joseph).
masculin(georges).
masculin(henri).
feminin(nelly).
feminin(martine).
feminin(anne).
feminin(jeanne).
% parent(X,Y) est vrai si Y est le pere/mere de X
parent(robert, hubert).
parent(robert, georges).
parent(robert, anne).
parent(joseph, nelly).
parent(hubert, denis).
parent(hubert, martine).
parent(nelly, denis).
parent(nelly, martine).
parent(georges, jeanne).
parent(georges, henri).

2026/01/27 05:21 5/8 Programation logique

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Définissez une règle pere(Pere, Enfant) qui est vrai si Pere est le père de Enfant.

Faites de même avec la relation mere(Mere, Enfant).

Définissez une règle fils(Fils, Parent) qui est vrai si Fils est le fils du parent Parent. Faites de même
avec la relation fille(Fille, Parent).

Définissez les règles

frere(Frere, X) qui est vrai si Frere est le frère de X.
oncle(Oncle, X) qui est vrai si Oncle est l’oncle de X.
neveu(Neveu, X) qui est vrai si Neveu est le neveu de X.
grand-pere(GP, X) qui est vrai si GP est le grand-père de X.

Exercice

On considère les affirmations suivantes (dues à Lewis Carroll, dans La logique symbolique) :

Tous les canards vivant dans ce village qui sont marqués d’un B appartiennent à Mrs. Bond.1.
Les canards vivant dans ce village ne portent pas de col en dentelle, à moins qu’ils n’appartiennent à2.
Mrs. Bond.
Mrs. Bond ne possède aucun canard gris vivant dans ce village.3.

Traduisez ces affirmations sous la forme de règles Prolog dans un fichier canards.pl en vous
appuyant sur les constantes ce_village et mrs_bond, les prédicats unaires canard et
porte_col_dentelle, et les prédicats binaires appartient_a, marque_avec, pas_gris et
vit_dans (et aucun autre prédicat ou symbole de fonction).

À présent, on considère George, un canard de ce village marqué AB et qui porte un col de
dentelles et Augusta, une cane de ce village marquée B. Ajoutez les faits correspondant à votre
fichier.

On se demande quels sont les canards de la base qui ne sont pas gris. Utilisez l’interprète Prolog
pour répondre à cette question.

Récursivité

Liste des nombres de N à 1

/* de N à 1 */
decroissant(0).
decroissant(N) :- N>0, write(N), nl, N1 is N-1, decroissant(N1).

Last update: 2023/12/07 01:30 cnam:utc503:declarative:prolog http://slamwiki2.kobject.net/cnam/utc503/declarative/prolog

http://slamwiki2.kobject.net/ Printed on 2026/01/27 05:21

Liste des nombres de 1 à N

/* de 1 à N */
croissant(0).
croissant(N) :- N>0, N1 is N-1, croissant(N1), write(N), nl.

Nombres pairs

pair(0).
pair(X) :- X>0, X2 is X-2, pair(X2).

Somme des N premiers entiers

som(0,0).
som(N,X) :- N>0, N1 is N-1, som(N1,X1), X is N+X1.

Factorielle

fact(0,1).
fact(N,X) :- N>0, N1 is N-1, fact(N1,X1), X is N*X1.

Suite de Fibonacci

fibo(1,1).
fibo(2,1).
fibo(N,X) :- N>2, U is N-1, V is N-2, fibo(U,U1), fibo(V,V1),
 X is U1+V1.

Listes

En Prolog, Les tableaux sont des listes, dans lesquelles les indices des éléments ne sont pas
disponibles.

En revanche, une liste L peut toujours être décomposée en L=[E|R] où E est le premier élément de
la liste (E n'est pas une liste) et où R est le reste de la liste L (R est une liste : c'est en fait la
tranche de L qui démarre apres E).

2026/01/27 05:21 7/8 Programation logique

SlamWiki 2.1 - http://slamwiki2.kobject.net/

La liste vide est [].

Affichage

affiche([]).
affiche([X|R]) :- write(X), nl, affiche(R).

Premier élément

premier([X|_],X).

Dernier élément

dernier([X],X).
dernier([_|L],X) :- dernier(L,X).

Compte

compte([],0).
compte([_|R],N) :- compte(R,N1), N is N1+1, N>0.

Somme

somme([],0).
somme([X|R],N) :- somme(R,N1), N is N1+X.

Sudoku

Base de connaissances :

sudoku(Rows) :-
 length(Rows, 9), maplist(same_length(Rows), Rows),
 append(Rows, Vs), Vs ins 1..9,
 maplist(all_distinct, Rows),
 transpose(Rows, Columns),

Last update: 2023/12/07 01:30 cnam:utc503:declarative:prolog http://slamwiki2.kobject.net/cnam/utc503/declarative/prolog

http://slamwiki2.kobject.net/ Printed on 2026/01/27 05:21

 maplist(all_distinct, Columns),
 Rows = [As,Bs,Cs,Ds,Es,Fs,Gs,Hs,Is],
 blocks(As, Bs, Cs),
 blocks(Ds, Es, Fs),
 blocks(Gs, Hs, Is).
blocks([], [], []).
blocks([N1,N2,N3|Ns1], [N4,N5,N6|Ns2], [N7,N8,N9|Ns3]) :-
 all_distinct([N1,N2,N3,N4,N5,N6,N7,N8,N9]),
 blocks(Ns1, Ns2, Ns3).
problem(1, [[_,2,7,1,_,_,_,_,8],
 [_,_,_,_,7,_,_,4,2],
 [_,8,_,_,_,_,_,9,_],
 [1,_,_,_,_,_,6,_,_],
 [5,_,_,_,2,_,_,_,_],
 [_,_,_,_,8,5,_,_,_],
 [_,7,1,4,_,_,_,_,_],
 [_,4,_,2,6,_,_,_,_],
 [_,_,_,_,_,_,_,_,3]]).

Résolution

use_module(library(clpfd)).
[sudoku].
problem(1, Rows), sudoku(Rows), maplist(portray_clause, Rows).

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/cnam/utc503/declarative/prolog

Last update: 2023/12/07 01:30

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/cnam/utc503/declarative/prolog

	Programation logique
	PROLOG
	Faits
	Questions
	Variables
	Conjonctions
	Règles
	Exercices
	Exercice
	Récursivité
	Liste des nombres de N à 1
	Liste des nombres de 1 à N
	Nombres pairs
	Somme des N premiers entiers
	Factorielle
	Suite de Fibonacci

	Listes
	Affichage
	Premier élément
	Dernier élément
	Compte
	Somme

	Sudoku
	Base de connaissances :
	Résolution

