2026/01/09 10:04 1/3 TD2C

TD2C

Pré-requis

e Java 17+
e QOutil au choix: IntelliJ/VS Code + JDK. Optionnel: Maven si vous prenez I'exo sérialisation JSON avec
Jackson.

Objectifs pédagogiques

Encapsulation, invariants, types énumérés
Exceptions métier et validations
Composition (Inventaire, Objet)
Journalisation et petites 1/0

Méthodes d’instance vs de classe
Egalité/hash et identité

Petite boucle CLI pour “faire vivre” |'objet

Partie A — Enoncés

Exercice 1 — Classe Personnage minimale

Créez une classe Personnage avec:

e Attributs privés:

¢ id (UUID, immuable)

e nom (String, non vide)

e pv (int, borné 0-100)

¢ position x, y (int)

o statut (Enum Statut: HORS_LIGNE, EN_LIGNE, EN_COMBAT, KO)
¢ journal (List<String>) pour tracer les actions

¢ Constructeur: Personnage(String nom, int pvinitial, int x, int y)
e Méthodes publiques:

¢ seConnecter(), seDeconnecter()

e entrerCombat(), sortirCombat()

¢ prendreDegats(int n), soigner(int n)

¢ deplacer(int dx, int dy)

Invariants/régles:

0 < pv = 100 a tout moment.

Si pv == 0, statut = KO; impossible de se déplacer.
Actions interdites si HORS_LIGNE (sauf seConnecter()).
Impossible de seDeconnecter() depuis EN_COMBAT.

Encapsulation: exposez uniquement des getters en lecture (id, nom, pv, position, statut), pas de setters publics.
Ajoutez un toString() lisible (nom, pv, statut, position).

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2025/09/01 13:03 cnam:utc503:td2-c http://slamwiki2.kobject.net/cnam/utc503/td2-c

Exercice 2 — Exceptions métier et validation

Créez une exception Actioninterdite extends RuntimeException.
Toutes les violations de regles jettent Actioninterdite avec un message clair.

Validez les paramétres (ex: dégats/soins négatifs = clamp a 0 ou exception, a vous de choisir, justifiez).

Exercice 3 — Journalisation

e Méthode privée log(String msg) qui préfixe chaque entrée par un timestamp I1SO (yyyy-MM-dd
HH:mm:ss).

e Logguez les actions significatives (connexion, déconnexion, dégats, soin, déplacement, transitions
d'état).

¢ Ajoutez getJournal() qui renvoie une copie non modifiable (List.copyOf(...)).

Exercice 4 — Composition: Inventaire et Objet

Classe Objet { String nom; double poids; } immuable.

Classe Inventaire { double capaciteMax; List<Objet> internes; }

double poidsTotal()

void ajouter(Objet 0) — interdit si poidsTotal + poids > capaciteMax = Actioninterdite
Objet retirer(String nom) — retire le premier objet de ce nhom ou exception

Ajoutez un champ inventaire dans Personnage; getter en lecture.

Exercice 5 — Communication “admin réseau”

Méthode envoyerMessage(Personnage cible, String contenu): Interdit si émetteur HORS_LIGNE ou cible
HORS_LIGNE = Actioninterdite Logguez “Msg - <cible>: <contenu>" c6té émetteur

Méthode simulatePing(): renvoie une latence simulée en millisecondes (int entre 5 et 200), interdit si
HORS_LIGNE.

Exercice 6 — Sérialisation (au choix)

Option A (sans dépendance):

String toJson() — construisez une chaine JSON simple via StringBuilder (attention aux guillemets, échappez au
minimum nom/objets). static Personnage fromJson(String json) — parse minimaliste: pour simplifier, vous
pouvez ignorer I'inventaire ou parser seulement nom/pv/position/statut. Option B (avec Jackson): Ajoutez
Jackson Databind. Sérialisez/désérialisez Personnage (id lu/écrit en String). Marquez les champs non voulus si
besoin.

Exercice 7 — Identité, égalité, hash

id (UUID) défini au constructeur et jamais modifié. Implémentez equals() et hashCode() basés uniquement sur
id. Démonstration: mettez des Personnage dans un HashSet et vérifiez I'unicité.

http://slamwiki2.kobject.net/ Printed on 2026/01/09 10:04



2026/01/09 10:04 3/3 TD2C

Exercice 8 — Méthodes de classe (“usines”)

static Personnage nouveau(String nom) — valeurs par défaut: pv=100, x=0, y=0. static Personnage
fromSnapshot(...) — construit depuis des valeurs primaires (ex: pour tests).

Exercice 9 — Petite CLI

Programme Main lisant des lignes sur stdin: Commandes: connect, disconnect, fight, stopfight, move dx dy, hit
n, heal n, ping, status, additem nom poids, rmitem nom, json, quit Gérez proprement les exceptions (afficher
“Erreur: ...").

Affichez I'état apres chague commande utile.
Exercice 10 — Tests unitaires (JUnit 5)

Tests suggérés: PV bornés (ne pas dépasser 100; pas négatif). Transitions d'états interdites (ex: disconnect
depuis EN_COMBAT). Inventaire plein = exception. KO = déplacement impossible; premier soin réanime a min 1
PV (si vous adoptez cette regle). equals/hashCode par id.

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/cnam/utc503/td2-c

Last update: 2025/09/01 13:03

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/cnam/utc503/td2-c

	TD 2 C
	Pré-requis
	Objectifs pédagogiques
	Partie A — Énoncés
	Exercice 1 — Classe Personnage minimale
	Invariants/règles:

	Exercice 2 — Exceptions métier et validation
	Exercice 3 — Journalisation
	Exercice 4 — Composition: Inventaire et Objet
	Exercice 5 — Communication “admin réseau”
	Exercice 6 — Sérialisation (au choix)
	Exercice 7 — Identité, égalité, hash
	Exercice 8 — Méthodes de classe (“usines”)
	Exercice 9 — Petite CLI



