
2026/01/09 10:04 1/3 TD 2 C

SlamWiki 2.1 - http://slamwiki2.kobject.net/

TD 2 C

Pré-requis

Java 17+
Outil au choix: IntelliJ/VS Code + JDK. Optionnel: Maven si vous prenez l’exo sérialisation JSON avec
Jackson.

Objectifs pédagogiques

Encapsulation, invariants, types énumérés
Exceptions métier et validations
Composition (Inventaire, Objet)
Journalisation et petites I/O
Méthodes d’instance vs de classe
Égalité/hash et identité
Petite boucle CLI pour “faire vivre” l’objet

Partie A — Énoncés

Exercice 1 — Classe Personnage minimale

Créez une classe Personnage avec:

Attributs privés:
id (UUID, immuable)
nom (String, non vide)
pv (int, borné 0–100)
position x, y (int)
statut (Enum Statut: HORS_LIGNE, EN_LIGNE, EN_COMBAT, KO)
journal (List<String>) pour tracer les actions

Constructeur: Personnage(String nom, int pvInitial, int x, int y)
Méthodes publiques:
seConnecter(), seDeconnecter()
entrerCombat(), sortirCombat()
prendreDegats(int n), soigner(int n)
deplacer(int dx, int dy)

Invariants/règles:

0 ≤ pv ≤ 100 à tout moment.
Si pv == 0, statut = KO; impossible de se déplacer.
Actions interdites si HORS_LIGNE (sauf seConnecter()).
Impossible de seDeconnecter() depuis EN_COMBAT.

Encapsulation: exposez uniquement des getters en lecture (id, nom, pv, position, statut), pas de setters publics.
Ajoutez un toString() lisible (nom, pv, statut, position).



Last update: 2025/09/01 13:03 cnam:utc503:td2-c http://slamwiki2.kobject.net/cnam/utc503/td2-c

http://slamwiki2.kobject.net/ Printed on 2026/01/09 10:04

Exercice 2 — Exceptions métier et validation

Créez une exception ActionInterdite extends RuntimeException.

Toutes les violations de règles jettent ActionInterdite avec un message clair.

Validez les paramètres (ex: dégâts/soins négatifs ⇒ clamp à 0 ou exception, à vous de choisir, justifiez).

Exercice 3 — Journalisation

Méthode privée log(String msg) qui préfixe chaque entrée par un timestamp ISO (yyyy-MM-dd
HH:mm:ss).
Logguez les actions significatives (connexion, déconnexion, dégâts, soin, déplacement, transitions
d’état).
Ajoutez getJournal() qui renvoie une copie non modifiable (List.copyOf(…)).

Exercice 4 — Composition: Inventaire et Objet

Classe Objet { String nom; double poids; } immuable.
Classe Inventaire { double capaciteMax; List<Objet> internes; }
double poidsTotal()
void ajouter(Objet o) — interdit si poidsTotal + poids > capaciteMax ⇒ ActionInterdite
Objet retirer(String nom) — retire le premier objet de ce nom ou exception

Ajoutez un champ inventaire dans Personnage; getter en lecture.

Exercice 5 — Communication “admin réseau”

Méthode envoyerMessage(Personnage cible, String contenu): Interdit si émetteur HORS_LIGNE ou cible
HORS_LIGNE ⇒ ActionInterdite Logguez “Msg → <cible>: <contenu>” côté émetteur

Méthode simulatePing(): renvoie une latence simulée en millisecondes (int entre 5 et 200), interdit si
HORS_LIGNE.

Exercice 6 — Sérialisation (au choix)

Option A (sans dépendance):

String toJson() — construisez une chaîne JSON simple via StringBuilder (attention aux guillemets, échappez au
minimum nom/objets). static Personnage fromJson(String json) — parse minimaliste: pour simplifier, vous
pouvez ignorer l’inventaire ou parser seulement nom/pv/position/statut. Option B (avec Jackson): Ajoutez
Jackson Databind. Sérialisez/désérialisez Personnage (id lu/écrit en String). Marquez les champs non voulus si
besoin.

Exercice 7 — Identité, égalité, hash

id (UUID) défini au constructeur et jamais modifié. Implémentez equals() et hashCode() basés uniquement sur
id. Démonstration: mettez des Personnage dans un HashSet et vérifiez l’unicité.



2026/01/09 10:04 3/3 TD 2 C

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Exercice 8 — Méthodes de classe (“usines”)

static Personnage nouveau(String nom) — valeurs par défaut: pv=100, x=0, y=0. static Personnage
fromSnapshot(…) — construit depuis des valeurs primaires (ex: pour tests).

Exercice 9 — Petite CLI

Programme Main lisant des lignes sur stdin: Commandes: connect, disconnect, fight, stopfight, move dx dy, hit
n, heal n, ping, status, additem nom poids, rmitem nom, json, quit Gérez proprement les exceptions (afficher
“Erreur: …”).

Affichez l’état après chaque commande utile.

Exercice 10 — Tests unitaires (JUnit 5)

Tests suggérés: PV bornés (ne pas dépasser 100; pas négatif). Transitions d’états interdites (ex: disconnect
depuis EN_COMBAT). Inventaire plein ⇒ exception. KO ⇒ déplacement impossible; premier soin réanime à min 1
PV (si vous adoptez cette règle). equals/hashCode par id.

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/cnam/utc503/td2-c

Last update: 2025/09/01 13:03

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/cnam/utc503/td2-c

	TD 2 C
	Pré-requis
	Objectifs pédagogiques
	Partie A — Énoncés
	Exercice 1 — Classe Personnage minimale
	Invariants/règles:

	Exercice 2 — Exceptions métier et validation
	Exercice 3 — Journalisation
	Exercice 4 — Composition: Inventaire et Objet
	Exercice 5 — Communication “admin réseau”
	Exercice 6 — Sérialisation (au choix)
	Exercice 7 — Identité, égalité, hash
	Exercice 8 — Méthodes de classe (“usines”)
	Exercice 9 — Petite CLI



