2026/01/29 04:31 1/3 TD 3

TD 3

Exercice 1 : Fonctions Pures

1 - Création d'une fonction pure simple

e Ecrire une fonction pure qui prend un tableau de nombres et retourne un nouveau tableau avec chaque
nombre doublé.

2 - Test de la pureté

e Tester la fonction avec différents ensembles de données.
« |dentifier les caractéristiques qui font que la fonction est pure.

3 - Exemple d'une fonction impure

o Créer une fonction qui modifie une variable extérieure (effet de bord) et expliquer pourquoi elle est
impure.

Exercice 2 : Immutabilité

1 - Ajout d'un élément sans modification du tableau
e Ecrire une fonction qui ajoute un élément a un tableau sans modifier le tableau d'origine.
2 - Comparaison avec une approche mutable

¢ Modifier directement un tableau en utilisant ".push()" et observer les changements sur le tableau
d'origine.

3 - Modification immuable d'un objet

e Ecrire une fonction qui modifie une propriété d'un objet sans altérer I'original.

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2025/08/12 02:35 cnam:utc503:td3 http://slamwiki2.kobject.net/cnam/utc503/td3?rev=1729157212

Exercice 3 : Transparence Référentielle

1 - Transparence dans une fonction simple

e Créer une fonction qui calcule la somme de deux nombres.
e Remplacer les appels de fonction dans le code par les valeurs retournées et tester le comportement.

2 - Transparence dans des expressions complexes

e Introduire des fonctions imbriquées (somme et multiplication par exemple) et remplacer les appels par
leurs valeurs.
¢ Tester si le programme reste identique.

3 - Absence de transparence référentielle

e Créer une fonction avec des effets de bord (ex: “"Math.random()" ou modification d'une variable globale)
et expliquer pourquoi elle n'est pas transparente.

Exercice 4 : Fonctions d'ordre supérieur

1 - Application d'une fonction a chaque élément d'un tableau
e Ecrire une fonction d’ordre supérieur qui prend une fonction et I’applique & chaque élément d’un tableau.
2 - Création de fonctions retournant des fonctions

e Ecrire une fonction qui retourne une autre fonction (par exemple, une fonction qui crée un
multiplicateur).

3 - Utilisation de fonctions d'ordre supérieur intégrées

e Expérimenter avec les méthodes comme “filter()", "reduce()", et “forEach()" pour transformer des
tableaux.

http://slamwiki2.kobject.net/ Printed on 2026/01/29 04:31



2026/01/29 04:31 3/3 TD 3

Exercice 5 : Combinaison des principes

1 - Manipulation de tableaux d'objets

e Travailler sur un tableau d'objets représentant des produits avec un prix.
o Appliquer une réduction a chaque produit tout en conservant I'immutabilité.

2 - Calcul total avec "reduce’
¢ Calculer le prix total aprés réduction en utilisant “reduce’.

3 - Refactorisation pour pureté et réutilisabilité

e Réécrire le code en appliquant les principes vus, comme découper en plus petites fonctions pures.

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/cnam/utc503/td3?rev=1729157212

Last update: 2025/08/12 02:35

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/cnam/utc503/td3?rev=1729157212

	TD 3
	Exercice 1 : Fonctions Pures
	1 - Création d'une fonction pure simple
	2 - Test de la pureté
	3 - Exemple d'une fonction impure
	Points de discussion


	Exercice 2 : Immutabilité
	1 - Ajout d'un élément sans modification du tableau
	2 - Comparaison avec une approche mutable
	3 - Modification immuable d'un objet
	Points de discussion


	Exercice 3 : Transparence Référentielle
	1 - Transparence dans une fonction simple
	2 - Transparence dans des expressions complexes
	3 - Absence de transparence référentielle
	Points de discussion


	Exercice 4 : Fonctions d'ordre supérieur
	1 - Application d'une fonction à chaque élément d'un tableau
	2 - Création de fonctions retournant des fonctions
	3 - Utilisation de fonctions d'ordre supérieur intégrées
	Points de discussion


	Exercice 5 : Combinaison des principes
	1 - Manipulation de tableaux d'objets
	2 - Calcul total avec `reduce`
	3 - Refactorisation pour pureté et réutilisabilité
	Points de discussion




