2026/01/28 16:55 1/8 Tests d'intégration JPA - Les fondamentaux

Tests d'intégration JPA - Les fondamentaux

1. Introduction et concepts

2. Configuration de base

2.1 Dépendances Maven

<dependencies>

<!-- Spring Boot Test (inclut JUnit 5, Mockito, Assertl]) -->

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>

<!-- H2 pour tests en mémoire -->

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>test</scope>

</dependency>

<!-- Testcontainers (optionnel, pour base réelle) -->

<dependency>
<groupld>org.testcontainers</groupId>
<artifactId>postgresql</artifactId>
<version>1.19.3</version>
<scope>test</scope>

</dependency>

</dependencies>

2.2 Configuration de test (application-test.properties)

src/test/resources/application-test.properties

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/08 01:32 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

H2 Database en mémoire
spring.datasource.url=jdbc:h2:mem:testdb
spring.datasource.driver-class-name=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=

JPA/Hibernate
spring.jpa.hibernate.ddl-auto=create-drop
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format sql=true
spring.jpa.properties.hibernate.use sql comments=true

Désactiver cache pour tests prédictibles
spring.jpa.properties.hibernate.cache.use second level cache=false

Logging SQL détaillé

logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type.descriptor.sql.BasicBinder=TRACE
logging.level.org.hibernate.orm. jdbc.bind=TRACE

3. Anatomie d'un test JPA

3.1 Test Repository basique

@batalpaTest // « Annotation clé
@ActiveProfiles("test")
class ProductRepositoryTest {

@Autowired

private ProductRepository productRepository;

@Autowired

private TestEntityManager entityManager; // <« Utilitaire de test JPA

@Test

void shouldSaveAndFindProduct() {
// Given
Product product = new Product();
product.setName("Test Product");
product.setPrice(new BigDecimal("99.99"));
// When
Product saved = productRepository.save(product);
entityManager.flush(); // Force SQL immédiat
entityManager.clear(); // Vide le cache (simule nouvelle session)
// Then
Product found = productRepository.findById(saved.getId()).orElseThrow();
assertThat(found.getName()).isEqualTo("Test Product");
assertThat(found.getPrice()).isEqualByComparingTo("99.99");

http://slamwiki2.kobject.net/ Printed on 2026/01/28 16:55

2026/01/28 16:55 3/8 Tests d'intégration JPA - Les fondamentaux

3.2 TestEntityManager - Les commandes clés

@Test

void demonstrateTestEntityManager() {
Product product = new Product("Laptop", new BigDecimal("1200"));
// persist() : INSERT sans flush immédiat
entityManager.persist(product);
// flush() : Force l'exécution des SQL en attente
entityManager.flush();
// clear() : Vide le contexte de persistance (cache ler niveau)
entityManager.clear();
// find() : SELECT en DB (car cache vidé)
Product fromDb = entityManager.find(Product.class, product.getId());
// detach() : Détache une entité du contexte
entityManager.detach(fromDb);

4. Tests des associations

4.1 OneToMany bidirectionnel

@Test

void shouldCascadeOrderToOrderItems() {
// Given
User user = new User("john@test.com");
entityManager.persist(user);
Order order = new Order(user);
OrderItem iteml = new OrderItem(order, "Product A", 2);
OrderItem item2 = new OrderItem(order, "Product B", 1);
order.addItem(iteml); // Méthode helper bidirectionnelle
order.addItem(item2);
// When
entityManager.persist(order); // CASCADE.PERSIST sur items
entityManager.flush();
entityManager.clear();
// Then
Order found = entityManager.find(Order.class, order.getId());
assertThat(found.getItems()).hasSize(2);
assertThat (found.getItems())

.extracting(OrderItem::getProductName)
.containsExactlyInAnyOrder("Product A", "Product B");

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/08 01:32 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

4.2 Probleme N+1 - Détection

@Test
void shouldDetectNPlusOneProblem() {

}

// Given : 3 orders avec items
createOrdersWithItems(3);
entityManager.clear();
// When : Récupération sans FETCH
List<Order> orders = entityManager
.createQuery("SELECT o FROM Order o", Order.class)
.getResultList();
// Then : Provoque N+1 si on accéde aux items
orders.forEach(order -> {
// a0 1 requéte par order.getItems() = N+1
System.out.println("Items count: " + order.getItems().size());
3
// Vérifie le nombre de requétes (avec Hypersistence Utils)
// assertSelectCount(1l + 3); // 1 pour orders + 3 pour items

@Test
void shouldSolveNPlusOneWithJoinFetch() {

// Given
createOrdersWithItems(3);
entityManager.clear();
// When : Avec JOIN FETCH
List<Order> orders = entityManager
.createQuery("SELECT DISTINCT o FROM Order o LEFT JOIN FETCH o.items",

Order.class)

.getResultList();
// Then : 1 seule requéte
orders.forEach(order -> {

System.out.println("Items count: " + order.getItems().size());
3

// assertSelectCount(1l); // Une seule requéte

5. Tests des requétes JPQL

5.1 Query basique

@Test
void shouldFindProductsByPriceRange() {

// Given

entityManager.persist(new Product("Cheap", new BigDecimal("10")));
entityManager.persist(new Product("Medium", new BigDecimal("50")));
entityManager.persist(new Product("Expensive", new BigDecimal("200")));
entityManager. flush();

// When

List<Product> products = productRepository.findByPriceBetween (

http://slamwiki2.kobject.net/ Printed on 2026/01/28 16:55

2026/01/28 16:55 5/8 Tests d'intégration JPA - Les fondamentaux

new BigDecimal("20"),
new BigDecimal("100")

)i

// Then

assertThat(products)
.hasSize(1)
.extracting(Product: :getName)
.containsExactly("Medium");

5.2 Projection DTO

public record ProductSummary(UUID id, String name, BigDecimal price) {}

@Test
void shouldProjectToDTO() {
// Given
entityManager.persist(new Product("Test", new BigDecimal("99.99")));
entityManager.flush();
// When
List<ProductSummary> summaries = entityManager
.createQuery (
"SELECT new com.example.dto.ProductSummary(p.id, p.name, p.price)
"FROM Product p",
ProductSummary.class

n +

)

.getResultList();
// Then
assertThat(summaries) .hasSize(1);
assertThat(summaries.get(0).name()).isEqualTo("Test");

6. Tests avec données initiales

6.1 Via fichier SQL

@Test
@Sql("/test-data/products.sql") // < Exécute avant le test
void shouldLoadFromSqlFile() {
List<Product> products = productRepository.findAll();
assertThat(products).hasSizeGreaterThan(0);

Fichier src/test/resources/test-data/products.sql:

INSERT INTO product (id, name, price, stock) VALUES
('123e4567-e89b-12d3-a456-426614174000', 'Product 1', 10.00, 100),

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/08 01:32

eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

('123e4567-e89b-12d3-a456-426614174001', 'Product 2', 20.00, 50);

6.2 Via méthode @BeforeEach

@DatalpaTest
class OrderRepositoryTest {

@Autowired

private OrderRepository orderRepository;

@Autowired

private TestEntityManager entityManager;

private User testUser;

@BeforeEach

void setUp() {
testUser = new User("test@example.com");
entityManager.persist(testUser);
entityManager.flush();

}

@Test

void shouldFindOrdersByUser() {
Order order = new Order(testUser);
entityManager.persist(order);

List<Order> orders = orderRepository.findByUser(testUser);

assertThat(orders) .hasSize(1);

7. Tests des contraintes

7.1 Validation Bean Validation

@Test
void shouldFailWhenEmailInvalid() {

// Given

User user = new User();

user.setUsername("john");

user.setEmail("invalid-email"); // « Email invalide

// When/Then

assertThatThrownBy (() -> {
entityManager.persist(user);
entityManager.flush(); // Validation lors du flush

)

.isInstanceOf (ConstraintViolationException.class)

.hasMessageContaining("email");

http://slamwiki2.kobject.net/

Printed on 2026/01/28 16:55

2026/01/28 16:55 7/8 Tests d'intégration JPA - Les fondamentaux

7.2 Contrainte unique

@Test
void shouldFailOnDuplicateEmail() {
// Given
entityManager.persist(new User("john@test.com"));
entityManager.flush();
entityManager.clear();
// When/Then
assertThatThrownBy(() -> {
User duplicate = new User("john@test.com");
entityManager.persist(duplicate);
entityManager.flush();
})

.isInstanceOf (DataIntegrityViolationException.class);

8. Testcontainers (DB réelle)

@DatalpaTest

@AutoConfigureTestDatabase(replace = AutoConfigureTestDatabase.Replace.NONE)
@Testcontainers

class ProductRepositoryTestcontainersTest {

@Container
static PostgreSQLContainer<?> postgres = new
PostgreSQLContainer<>("postgres:15")

.withDatabaseName("testdb")
.withUsername("test")
.withPassword("test");

@ynamicPropertySource

static void configureProperties(DynamicPropertyRegistry registry) {
registry.add("spring.datasource.url", postgres::getJdbcUrl);
registry.add("spring.datasource.username", postgres::getUsername);
registry.add("spring.datasource.password", postgres::getPassword);

}

@Autowired

private ProductRepository productRepository;

@Test

void shouldWorkWithRealPostgres() {
Product product = new Product("Real DB Test", new BigDecimal("99"));
productRepository.save(product);
assertThat (productRepository.findById(product.getId())).isPresent();

9. Bonnes pratiques

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/08 01:32 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

10. Exercice pratique

Ressources

¢ Spring Boot Testing Documentation
¢ Baeldung - Spring Boot Testing
¢ Vlad Mihalcea's Blog

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

Last update: 2025/10/08 01:32

http://slamwiki2.kobject.net/ Printed on 2026/01/28 16:55

https://docs.spring.io/spring-boot/docs/current/reference/html/data.html#data.sql.jpa-and-spring-data.testing
https://www.baeldung.com/spring-boot-testing
https://vladmihalcea.com/hibernate-query-plan-cache/
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

	[Tests d'intégration JPA - Les fondamentaux]
	Tests d'intégration JPA - Les fondamentaux
	1. Introduction et concepts
	2. Configuration de base
	2.1 Dépendances Maven
	2.2 Configuration de test (application-test.properties)

	3. Anatomie d'un test JPA
	3.1 Test Repository basique
	3.2 TestEntityManager - Les commandes clés

	4. Tests des associations
	4.1 OneToMany bidirectionnel
	4.2 Problème N+1 - Détection

	5. Tests des requêtes JPQL
	5.1 Query basique
	5.2 Projection DTO

	6. Tests avec données initiales
	6.1 Via fichier SQL
	6.2 Via méthode @BeforeEach

	7. Tests des contraintes
	7.1 Validation Bean Validation
	7.2 Contrainte unique

	8. Testcontainers (DB réelle)
	9. Bonnes pratiques
	10. Exercice pratique

	Ressources

