
2026/01/28 16:55 1/8 Tests d'intégration JPA - Les fondamentaux

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Tests d'intégration JPA - Les fondamentaux

1. Introduction et concepts

Test d'intégration JPA : Teste les entités, repositories et requêtes avec une vraie base de
données (ou H2 en mémoire).

Différence avec test unitaire :

✅ Teste les mappings JPA réels
✅ Valide les contraintes DB
✅ Vérifie les requêtes SQL générées
✅ Détecte les problèmes N+1
❌ Plus lent qu'un test unitaire

2. Configuration de base

2.1 Dépendances Maven

<dependencies>
 <!-- Spring Boot Test (inclut JUnit 5, Mockito, AssertJ) -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <!-- H2 pour tests en mémoire -->
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <scope>test</scope>
 </dependency>
 <!-- Testcontainers (optionnel, pour base réelle) -->
 <dependency>
 <groupId>org.testcontainers</groupId>
 <artifactId>postgresql</artifactId>
 <version>1.19.3</version>
 <scope>test</scope>
 </dependency>
</dependencies>

2.2 Configuration de test (application-test.properties)

src/test/resources/application-test.properties

Last update: 2025/10/08 01:32 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

http://slamwiki2.kobject.net/ Printed on 2026/01/28 16:55

H2 Database en mémoire
spring.datasource.url=jdbc:h2:mem:testdb
spring.datasource.driver-class-name=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=

JPA/Hibernate
spring.jpa.hibernate.ddl-auto=create-drop
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true
spring.jpa.properties.hibernate.use_sql_comments=true

Désactiver cache pour tests prédictibles
spring.jpa.properties.hibernate.cache.use_second_level_cache=false

Logging SQL détaillé
logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type.descriptor.sql.BasicBinder=TRACE
logging.level.org.hibernate.orm.jdbc.bind=TRACE

3. Anatomie d'un test JPA

3.1 Test Repository basique

@DataJpaTest // ← Annotation clé
@ActiveProfiles("test")
class ProductRepositoryTest {

 @Autowired
 private ProductRepository productRepository;
 @Autowired
 private TestEntityManager entityManager; // ← Utilitaire de test JPA

 @Test
 void shouldSaveAndFindProduct() {
 // Given
 Product product = new Product();
 product.setName("Test Product");
 product.setPrice(new BigDecimal("99.99"));
 // When
 Product saved = productRepository.save(product);
 entityManager.flush(); // Force SQL immédiat
 entityManager.clear(); // Vide le cache (simule nouvelle session)
 // Then
 Product found = productRepository.findById(saved.getId()).orElseThrow();
 assertThat(found.getName()).isEqualTo("Test Product");
 assertThat(found.getPrice()).isEqualByComparingTo("99.99");
 }
}

Annotations essentielles :

2026/01/28 16:55 3/8 Tests d'intégration JPA - Les fondamentaux

SlamWiki 2.1 - http://slamwiki2.kobject.net/

@DataJpaTest : Configure uniquement la couche JPA (pas de serveur web)
@AutoConfigureTestDatabase(replace = NONE) : Utilise la DB configurée (pas H2
auto)
@Sql : Exécute un script SQL avant le test

3.2 TestEntityManager - Les commandes clés

@Test
void demonstrateTestEntityManager() {
 Product product = new Product("Laptop", new BigDecimal("1200"));
 // persist() : INSERT sans flush immédiat
 entityManager.persist(product);
 // flush() : Force l'exécution des SQL en attente
 entityManager.flush();
 // clear() : Vide le contexte de persistance (cache 1er niveau)
 entityManager.clear();
 // find() : SELECT en DB (car cache vidé)
 Product fromDb = entityManager.find(Product.class, product.getId());
 // detach() : Détache une entité du contexte
 entityManager.detach(fromDb);
}

4. Tests des associations

4.1 OneToMany bidirectionnel

@Test
void shouldCascadeOrderToOrderItems() {
 // Given
 User user = new User("john@test.com");
 entityManager.persist(user);
 Order order = new Order(user);
 OrderItem item1 = new OrderItem(order, "Product A", 2);
 OrderItem item2 = new OrderItem(order, "Product B", 1);
 order.addItem(item1); // Méthode helper bidirectionnelle
 order.addItem(item2);
 // When
 entityManager.persist(order); // CASCADE.PERSIST sur items
 entityManager.flush();
 entityManager.clear();
 // Then
 Order found = entityManager.find(Order.class, order.getId());
 assertThat(found.getItems()).hasSize(2);
 assertThat(found.getItems())
 .extracting(OrderItem::getProductName)
 .containsExactlyInAnyOrder("Product A", "Product B");
}

Last update: 2025/10/08 01:32 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

http://slamwiki2.kobject.net/ Printed on 2026/01/28 16:55

4.2 Problème N+1 - Détection

@Test
void shouldDetectNPlusOneProblem() {
 // Given : 3 orders avec items
 createOrdersWithItems(3);
 entityManager.clear();
 // When : Récupération sans FETCH
 List<Order> orders = entityManager
 .createQuery("SELECT o FROM Order o", Order.class)
 .getResultList();
 // Then : Provoque N+1 si on accède aux items
 orders.forEach(order -> {
 // ⚠️ 1 requête par order.getItems() = N+1
 System.out.println("Items count: " + order.getItems().size());
 });
 // Vérifie le nombre de requêtes (avec Hypersistence Utils)
 // assertSelectCount(1 + 3); // 1 pour orders + 3 pour items
}

@Test
void shouldSolveNPlusOneWithJoinFetch() {
 // Given
 createOrdersWithItems(3);
 entityManager.clear();
 // When : Avec JOIN FETCH
 List<Order> orders = entityManager
 .createQuery("SELECT DISTINCT o FROM Order o LEFT JOIN FETCH o.items",
Order.class)
 .getResultList();
 // Then : 1 seule requête
 orders.forEach(order -> {
 System.out.println("Items count: " + order.getItems().size());
 });
 // assertSelectCount(1); // Une seule requête
}

5. Tests des requêtes JPQL

5.1 Query basique

@Test
void shouldFindProductsByPriceRange() {
 // Given
 entityManager.persist(new Product("Cheap", new BigDecimal("10")));
 entityManager.persist(new Product("Medium", new BigDecimal("50")));
 entityManager.persist(new Product("Expensive", new BigDecimal("200")));
 entityManager.flush();
 // When
 List<Product> products = productRepository.findByPriceBetween(

2026/01/28 16:55 5/8 Tests d'intégration JPA - Les fondamentaux

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 new BigDecimal("20"),
 new BigDecimal("100")
);
 // Then
 assertThat(products)
 .hasSize(1)
 .extracting(Product::getName)
 .containsExactly("Medium");
}

5.2 Projection DTO

public record ProductSummary(UUID id, String name, BigDecimal price) {}

@Test
void shouldProjectToDTO() {
 // Given
 entityManager.persist(new Product("Test", new BigDecimal("99.99")));
 entityManager.flush();
 // When
 List<ProductSummary> summaries = entityManager
 .createQuery(
 "SELECT new com.example.dto.ProductSummary(p.id, p.name, p.price) " +
 "FROM Product p",
 ProductSummary.class
)
 .getResultList();
 // Then
 assertThat(summaries).hasSize(1);
 assertThat(summaries.get(0).name()).isEqualTo("Test");
}

6. Tests avec données initiales

6.1 Via fichier SQL

@Test
@Sql("/test-data/products.sql") // ← Exécute avant le test
void shouldLoadFromSqlFile() {
 List<Product> products = productRepository.findAll();
 assertThat(products).hasSizeGreaterThan(0);
}

Fichier src/test/resources/test-data/products.sql :

INSERT INTO product (id, name, price, stock) VALUES
('123e4567-e89b-12d3-a456-426614174000', 'Product 1', 10.00, 100),

Last update: 2025/10/08 01:32 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

http://slamwiki2.kobject.net/ Printed on 2026/01/28 16:55

('123e4567-e89b-12d3-a456-426614174001', 'Product 2', 20.00, 50);

6.2 Via méthode @BeforeEach

@DataJpaTest
class OrderRepositoryTest {

 @Autowired
 private OrderRepository orderRepository;
 @Autowired
 private TestEntityManager entityManager;
 private User testUser;
 @BeforeEach
 void setUp() {
 testUser = new User("test@example.com");
 entityManager.persist(testUser);
 entityManager.flush();
 }
 @Test
 void shouldFindOrdersByUser() {
 Order order = new Order(testUser);
 entityManager.persist(order);
 List<Order> orders = orderRepository.findByUser(testUser);
 assertThat(orders).hasSize(1);
 }
}

7. Tests des contraintes

7.1 Validation Bean Validation

@Test
void shouldFailWhenEmailInvalid() {
 // Given
 User user = new User();
 user.setUsername("john");
 user.setEmail("invalid-email"); // ← Email invalide
 // When/Then
 assertThatThrownBy(() -> {
 entityManager.persist(user);
 entityManager.flush(); // Validation lors du flush
 })
 .isInstanceOf(ConstraintViolationException.class)
 .hasMessageContaining("email");
}

2026/01/28 16:55 7/8 Tests d'intégration JPA - Les fondamentaux

SlamWiki 2.1 - http://slamwiki2.kobject.net/

7.2 Contrainte unique

@Test
void shouldFailOnDuplicateEmail() {
 // Given
 entityManager.persist(new User("john@test.com"));
 entityManager.flush();
 entityManager.clear();
 // When/Then
 assertThatThrownBy(() -> {
 User duplicate = new User("john@test.com");
 entityManager.persist(duplicate);
 entityManager.flush();
 })
 .isInstanceOf(DataIntegrityViolationException.class);
}

8. Testcontainers (DB réelle)

@DataJpaTest
@AutoConfigureTestDatabase(replace = AutoConfigureTestDatabase.Replace.NONE)
@Testcontainers
class ProductRepositoryTestcontainersTest {

 @Container
 static PostgreSQLContainer<?> postgres = new
PostgreSQLContainer<>("postgres:15")
 .withDatabaseName("testdb")
 .withUsername("test")
 .withPassword("test");
 @DynamicPropertySource
 static void configureProperties(DynamicPropertyRegistry registry) {
 registry.add("spring.datasource.url", postgres::getJdbcUrl);
 registry.add("spring.datasource.username", postgres::getUsername);
 registry.add("spring.datasource.password", postgres::getPassword);
 }
 @Autowired
 private ProductRepository productRepository;
 @Test
 void shouldWorkWithRealPostgres() {
 Product product = new Product("Real DB Test", new BigDecimal("99"));
 productRepository.save(product);
 assertThat(productRepository.findById(product.getId())).isPresent();
 }
}

9. Bonnes pratiques

Last update: 2025/10/08 01:32 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

http://slamwiki2.kobject.net/ Printed on 2026/01/28 16:55

DO

Utiliser flush() et clear() pour isoler les tests du cache
Tester les cas limites (null, contraintes, cascades)
Vérifier les requêtes SQL générées (show-sql: true)
Utiliser AssertJ pour des assertions lisibles
Nommer explicitement les tests (shouldXxxWhenYyy)

DON'T

Ne pas tester la logique métier ici (c'est le rôle des tests unitaires)
Éviter les dépendances entre tests
Ne pas réutiliser les mêmes données sans clear()
Ne pas oublier @Transactional est par défaut avec @DataJpaTest

10. Exercice pratique

À implémenter :

Créer les tests d'intégration pour l'entité Review :

Test de création d'une review avec associations1.
Test de la contrainte rating entre 1 et 52.
Test unicité (user, product)3.
Test du chargement avec JOIN FETCH (éviter N+1)4.
Test de calcul de moyenne des ratings par produit5.
Test de la projection ReviewSummaryDTO6.

Ressources

Spring Boot Testing Documentation
Baeldung - Spring Boot Testing
Vlad Mihalcea's Blog

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

Last update: 2025/10/08 01:32

https://docs.spring.io/spring-boot/docs/current/reference/html/data.html#data.sql.jpa-and-spring-data.testing
https://www.baeldung.com/spring-boot-testing
https://vladmihalcea.com/hibernate-query-plan-cache/
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b

	[Tests d'intégration JPA - Les fondamentaux]
	Tests d'intégration JPA - Les fondamentaux
	1. Introduction et concepts
	2. Configuration de base
	2.1 Dépendances Maven
	2.2 Configuration de test (application-test.properties)

	3. Anatomie d'un test JPA
	3.1 Test Repository basique
	3.2 TestEntityManager - Les commandes clés

	4. Tests des associations
	4.1 OneToMany bidirectionnel
	4.2 Problème N+1 - Détection

	5. Tests des requêtes JPQL
	5.1 Query basique
	5.2 Projection DTO

	6. Tests avec données initiales
	6.1 Via fichier SQL
	6.2 Via méthode @BeforeEach

	7. Tests des contraintes
	7.1 Validation Bean Validation
	7.2 Contrainte unique

	8. Testcontainers (DB réelle)
	9. Bonnes pratiques
	10. Exercice pratique

	Ressources

