2026/02/15 05:31 1/9 Tests d'intégration JPA - Les fondamentaux

Tests d'intégration JPA - Les fondamentaux

1. Introduction et concepts

2. Configuration de base
2.1 Dépendances Maven

<dependencies>
<!-- Spring Boot Test (inclut JUnit 5, Mockito, AssertJ)
<dependency>
<groupIld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>

<!-- H2 pour tests en mémoire -->

<dependency>
<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<scope>test</scope>

</dependency>

<!-- Testcontainers (optionnel, pour base réelle) -->

<dependency>
<groupIld>org.testcontainers</groupId>
<artifactId>postgresqgl</artifactId>
<version>1.19.3</version>
<scope>test</scope>

</dependency>

</dependencies>

2.2 Configuration de test (application-test.properties)

src/test/resources/application-test.properties

H2 Database en mémoire
spring.datasource.url=jdbc:h2:mem:testdb

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/08 00:30 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b?rev=1759876211

spring.datasource.driver-class-name=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password

JPA/Hibernate
spring.jpa.hibernate.ddl-auto=create-drop
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format sql=true
spring.jpa.properties.hibernate.use sql comments=true

Désactiver cache pour tests prédictibles
spring.jpa.properties.hibernate.cache.use second level cache=false

Logging SQL détaillé

logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type.descriptor.sql.BasicBinder=TRACE
logging.level.org.hibernate.orm. jdbc.bind=TRACE

3. Anatomie d'un test JPA

3.1 Test Repository basique

@DbatalpaTest // « Annotation clé
@ActiveProfiles("test"
ProductRepositoryTest

@Autowired
ProductRepository productRepository

@Autowired
TestEntityManager entityManager; // < Utilitaire de test JPA

@Test

void shouldSaveAndFindProduct
// Given
Product product Product
product.setName("Test Product"
product.setPrice BigDecimal("99.99"
// When
Product saved productRepository.save(product
entityManager. flush // Force SQL immédiat
entityManager.clear // Vide le cache (simule nouvelle session)
// Then

Product found = productRepository.findById(saved.getId .orElseThrow
assertThat (found.getName .isEqualTo("Test Product"
assertThat (found.getPrice .isEqualByComparingTo("99.99"

http://slamwiki2.kobject.net/ Printed on 2026/02/15 05:31

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal

2026/02/15 05:31 3/9 Tests d'intégration JPA - Les fondamentaux

3.2 TestEntityManager - Les commandes clés

@Test
void demonstrateTestEntityManager
Product product Product ("Laptop", BigDecimal("1200"

// persist() : INSERT sans flush immédiat
entityManager.persist(product

// flush() : Force l'exécution des SQL en attente
entityManager.flush

// clear() : Vide le contexte de persistance (cache ler niveau)
entityManager.clear

// find() : SELECT en DB (car cache vidé)
Product fromDb = entityManager.find(Product. , product.getId

// detach() : Détache une entité du contexte
entityManager.detach(fromDb

4. Tests des associations

4.1 OneToMany bidirectionnel

@Test
void shouldCascadeOrderToOrderItems
// Given
User user User("john@test.com"

entityManager.persist(user

Order order Order(user
OrderItem iteml OrderItem(order, "Product A", 2
OrderItem item2 OrderItem(order, "Product B", 1

order.addItem(iteml // Méthode helper bidirectionnelle
order.addItem(item2

// When

entityManager.persist(order // CASCADE.PERSIST sur items
entityManager.flush

entityManager.clear

// Then
Order found entityManager.find(Order. , order.getId

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal

Last update: 2025/10/08 00:30 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b?rev=1759876211

assertThat(found.getItems .hasSize(2
assertThat(found.getItems
.extracting(OrderItem: :getProductName
.containsExactlyInAnyOrder("Product A", "Product B"

4.2 Probleme N+1 - Détection

@Test

void shouldDetectNPlusOneProblem
// Given : 3 orders avec items
createOrdersWithItems (3
entityManager.clear

// When : Récupération sans FETCH

List<Order> orders entityManager
.createQuery ("SELECT o FROM Order o", Order.
.getResultList

// Then : Provoque N+1 si on accéde aux items

orders. order
// 00 1 requéte par order.getItems() = N+1
System.out.println("Items count: " order.getItems().size

// Vérifie le nombre de requétes (avec Hypersistence Utils)
// assertSelectCount(1 + 3); // 1 pour orders + 3 pour items

@Test

void shouldSolveNPlusOneWithJoinFetch
// Given
createOrdersWithItems (3
entityManager.clear

// When : Avec JOIN FETCH
List<Order> orders = entityManager
.createQuery ("SELECT DISTINCT o FROM Order o LEFT JOIN FETCH o.items",
Order.
.getResultList

// Then : 1 seule requéte
orders. order
System.out.println("Items count: " order.getItems().size

// assertSelectCount(1); // Une seule requéte

5. Tests des requétes JPQL

5.1 Query basique

http://slamwiki2.kobject.net/ Printed on 2026/02/15 05:31

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

2026/02/15 05:31 5/9 Tests d'intégration JPA

- Les fondamentaux

@Test

void shouldFindProductsByPriceRange
// Given
entityManager.persist Product ("Cheap", BigDecimal("10"
entityManager.persist Product ("Medium", BigDecimal("50"
entityManager.persist Product("Expensive", BigDecimal("200"

entityManager.flush

// When

List<Product> products productRepository.findByPriceBetween
BigDecimal("20"),
BigDecimal("100"

// Then

assertThat(products
.hasSize
.extracting(Product: :getName
.containsExactly("Medium"

5.2 Projection DTO

record ProductSummary (UUID id, String name, BigDecimal price

@Test

void shouldProjectToDTO
// Given
entityManager.persist Product("Test", BigDecimal("99.99"
entityManager.flush

// When
List<ProductSummary> summaries entityManager
.createQuery
"SELECT new com.example.dto.ProductSummary(p.id, p.name, p.price) "
"FROM Product p",
ProductSummary.
.getResultList
// Then
assertThat (summaries).hasSize
assertThat (summaries.get .hame .isEqualTo("Test"

6. Tests avec données initiales

6.1 Via fichier SQL

@Test
@Sql("/test-data/products.sql” // < Exécute avant le test
void shouldLoadFromSqlFile

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal

Last update: 2025/10/08 00:30 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b?rev=1759876211

List<Product> products = productRepository.findAll
assertThat (products).hasSizeGreaterThan

Fichier src/test/resources/test-data/products.sql:

product (id, name, price, stock
'123e4567-e89b-12d3-a456-426614174000', 'Product 1'
'123e4567-e89b-12d3-a456-426614174001"', 'Product 2'

6.2 Via méthode @BeforeEach

@DatalpaTest
OrderRepositoryTest

@Autowired
OrderRepository orderRepository

@Autowired
TestEntityManager entityManager

User testUser

@BeforeEach

void setUp
testUser User("test@example.com"
entityManager.persist(testUser
entityManager. flush

@Test

void shouldFindOrdersByUser
Order order Order(testUser
entityManager.persist(order

List<Order> orders = orderRepository.findByUser(testUser
assertThat(orders) .hasSize

7. Tests des contraintes

7.1 Validation Bean Validation

@Test
void shouldFailWhenEmailInvalid
// Given
User user User
user.setUsername("john"
user.setEmail("invalid-email" // « Email invalide

// When/Then
assertThatThrownBy

http://slamwiki2.kobject.net/ Printed on 2026/02/15 05:31

2026/02/15 05:31 7/9 Tests d'intégration JPA - Les fondamentaux

entityManager.persist(user
entityManager. flush // Validation lors du flush

.isInstanceOf(ConstraintViolationException.
.hasMessageContaining("email"

7.2 Contrainte unique

@Test
void shouldFailOnDuplicateEmail
// Given
entityManager.persist User("john@test.com"

entityManager. flush
entityManager.clear

// When/Then

assertThatThrownBy
User duplicate User("john@test.com"
entityManager.persist(duplicate
entityManager. flush

.isInstanceOf (DataIntegrityViolationException.

8. Testcontainers (DB réelle)

@DatalpaTest
@AutoConfigureTestDatabase(replace = AutoConfigureTestDatabase.Replace.NONE
@Testcontainers

ProductRepositoryTestcontainersTest

@Container
PostgreSQLContainer postgres
PostgreSQLContainer "postgres:15"
.withDatabaseName("testdb"
.withUsername("test"
.withPassword("test"

@ynamicPropertySource
void configureProperties(DynamicPropertyRegistry registry
registry.add("spring.datasource.url", postgres::getJdbcUrl
registry.add("spring.datasource.username", postgres::getUsername
registry.add("spring.datasource.password", postgres::getPassword

@Autowired
ProductRepository productRepository

@Test

void shouldWorkWithRealPostgres
Product product Product("Real DB Test", BigDecimal("99"
productRepository.save(product

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+container
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+bigdecimal

Last update: 2025/10/08 00:30 eadl:bloc3:dev_av:td2-b http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b?rev=1759876211

assertThat (productRepository.findById(product.getId .isPresent

9. Bonnes pratiques

10. Exercice pratique

A implémenter :
Créer les tests d'intégration pour I'entité Review :

[] Test de création d'une review avec associations

[] Test de la contrainte rating entre 1 et 5

[] Test unicité (user, product)

[] Test du chargement avec JOIN FETCH (éviter N+1)
[] Test de calcul de moyenne des ratings par produit

[] Test de la projection ReviewSummaryDTO

on G W N =

Ressources

¢ Spring Boot Testing Documentation
¢ Baeldung - Spring Boot Testing
¢ Vlad Mihalcea's Blog

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b?rev=1759876211

Last update: 2025/10/08 00:30

http://slamwiki2.kobject.net/ Printed on 2026/02/15 05:31

https://docs.spring.io/spring-boot/docs/current/reference/html/data.html#data.sql.jpa-and-spring-data.testing
https://www.baeldung.com/spring-boot-testing
https://vladmihalcea.com/hibernate-query-plan-cache/
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2-b?rev=1759876211

2026/02/15 05:31 9/9 Tests d'intégration JPA - Les fondamentaux

SlamWiki 2.1 - http://slamwiki2.kobject.net/

	[Tests d'intégration JPA - Les fondamentaux]
	Tests d'intégration JPA - Les fondamentaux
	1. Introduction et concepts
	2. Configuration de base
	2.1 Dépendances Maven
	2.2 Configuration de test (application-test.properties)

	3. Anatomie d'un test JPA
	3.1 Test Repository basique
	3.2 TestEntityManager - Les commandes clés

	4. Tests des associations
	4.1 OneToMany bidirectionnel
	4.2 Problème N+1 - Détection

	5. Tests des requêtes JPQL
	5.1 Query basique
	5.2 Projection DTO

	6. Tests avec données initiales
	6.1 Via fichier SQL
	6.2 Via méthode @BeforeEach

	7. Tests des contraintes
	7.1 Validation Bean Validation
	7.2 Contrainte unique

	8. Testcontainers (DB réelle)
	9. Bonnes pratiques
	10. Exercice pratique

	Ressources

