
2026/01/28 04:12 1/16 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

2 - JPA Avancé et Optimisation

Séance 2 (4h)

Contexte : fil rouge e-commerce

Objectifs pédagogiques

Maîtriser les associations bidirectionnelles et leurs pièges
Comprendre et résoudre les problèmes N+1
Utiliser l'héritage JPA à bon escient
Optimiser les requêtes avec fetch strategies et projections

Partie 1 : Associations JPA (1h30)

1.1 Implémentation des associations manquantes

À réaliser :

Compléter Order ↔ OrderItem (bidirectionnel)
Implémenter Order → User (unidirectionnel)
Gérer User ↔ Category (preferences, Many-to-Many)
Ajouter @JsonIgnore / @JsonManagedReference pour éviter les boucles

Points d'attention :

Choix du côté propriétaire (mappedBy)
Cascade types appropriés
Orphan removal
Lazy vs Eager loading

1.2 Exercice pratique : Orders & OrderItems

// Contraintes métier à implémenter
// - Un Order doit toujours avoir au moins 1 OrderItem
// - Suppression d'un Order → suppression des OrderItems
// - totalAmount calculé automatiquement
// - Gestion du stock produit lors de la création

@Entity
@Table(name = "orders")
class Order(
 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "user_id", nullable = false)
 val user: User,

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2

http://slamwiki2.kobject.net/ Printed on 2026/01/28 04:12

 @Enumerated(EnumType.STRING)
 @Column(nullable = false)
 var status: OrderStatus = OrderStatus.PENDING,

 @Column(nullable = false)
 var totalAmount: BigDecimal = BigDecimal.ZERO,

 @Column(nullable = false)
 val createdAt: Instant = Instant.now()
) {
 @Id
 @GeneratedValue(strategy = GenerationType.UUID)
 var id: UUID? = null

 @OneToMany(
 mappedBy = "order",
 cascade = [CascadeType.ALL],
 orphanRemoval = true,
 fetch = FetchType.LAZY
)
 @JsonManagedReference
 private val _items: MutableList<OrderItem> = mutableListOf()

 val items: List<OrderItem>
 get() = _items.toList()

 fun addItem(item: OrderItem) {
 require(_items.isEmpty() || _items.size < 100) {
 "Cannot add more than 100 items to an order"
 }
 _items.add(item)
 item.order = this
 recalculateTotal()
 }

 fun removeItem(item: OrderItem) {
 _items.remove(item)
 item.order = null
 recalculateTotal()
 }

 private fun recalculateTotal() {
 totalAmount = _items.sumOf { it.unitPrice * it.quantity.toBigDecimal() }
 }

 init {
 require(user.id != null) { "User must be persisted before creating an
order" }
 }
}

@Entity
@Table(name = "order_items")
class OrderItem(
 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "product_id", nullable = false)

2026/01/28 04:12 3/16 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 val product: Product,

 @Column(nullable = false)
 val quantity: Int,

 @Column(nullable = false, precision = 10, scale = 2)
 val unitPrice: BigDecimal
) {
 @Id
 @GeneratedValue(strategy = GenerationType.UUID)
 var id: UUID? = null

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "order_id", nullable = false)
 @JsonBackReference
 var order: Order? = null

 init {
 require(quantity > 0) { "Quantity must be positive" }
 require(unitPrice > BigDecimal.ZERO) { "Unit price must be positive" }
 }
}

enum class OrderStatus {
 PENDING,
 CONFIRMED,
 SHIPPED,
 DELIVERED,
 CANCELLED
}

Tests attendus :

Création d'une commande avec items
Calcul automatique du total
Mise à jour du stock
Suppression en cascade

@SpringBootTest
@Transactional
class OrderServiceTest {

 @Autowired
 private lateinit var orderService: OrderService

 @Autowired
 private lateinit var userRepository: UserRepository

 @Autowired
 private lateinit var productRepository: ProductRepository

 @Test
 fun `should create order with items and calculate total`() {
 // Given

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2

http://slamwiki2.kobject.net/ Printed on 2026/01/28 04:12

 val user = userRepository.save(User("John Doe", "john@example.com"))
 val product1 = productRepository.save(
 Product("iPhone", BigDecimal("999.99"), 10, category)
)
 val product2 = productRepository.save(
 Product("MacBook", BigDecimal("1999.99"), 5, category)
)

 val dto = CreateOrderDto(
 userId = user.id!!,
 items = listOf(
 OrderItemDto(product1.id!!, 2),
 OrderItemDto(product2.id!!, 1)
)
)

 // When
 val order = orderService.createOrder(dto)

 // Then
 assertThat(order.items).hasSize(2)
 assertThat(order.totalAmount).isEqualByComparingTo("3999.97") // 2*999.99 +
1999.99
 assertThat(product1.stock).isEqualTo(8) // 10 - 2
 assertThat(product2.stock).isEqualTo(4) // 5 - 1
 }

 @Test
 fun `should fail when insufficient stock`() {
 // Given
 val user = userRepository.save(User("Jane", "jane@example.com"))
 val product = productRepository.save(
 Product("Limited Item", BigDecimal("50.00"), 2, category)
)

 val dto = CreateOrderDto(
 userId = user.id!!,
 items = listOf(OrderItemDto(product.id!!, 5))
)

 // When & Then
 assertThatThrownBy { orderService.createOrder(dto) }
 .isInstanceOf(InsufficientStockException::class.java)
 }
}

Chargement minimaliste

Pour recréer à moindre coût une relation (sans charger complètement l'instance depuis le repository)

val user = entityManager.getReference(User::class.java, userId)

2026/01/28 04:12 5/16 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Partie 2 : Problèmes de performance (1h30)

2.1 Diagnostic du problème N+1

Scénario :

// GET /users/{id}/orders
// Retourne les commandes avec leurs items et produits

Mission :

Activer les logs SQL (spring.jpa.show-sql=true)1.
Identifier le problème N+12.
Compter le nombre de requêtes générées3.

2.2 Solutions d'optimisation

À implémenter et comparer :

Solution Cas d'usage Avantages Inconvénients
@EntityGraph Requêtes standards Simple Moins flexible
JOIN FETCH Requêtes complexes Contrôle total Code JPQL
@BatchSize Lazy loading Transparent Moins optimal
DTO Projection Lecture seule Performances max Plus de code

Exercices :

Optimiser /users/{id}/orders avec JOIN FETCH1.
Créer une projection pour /products (liste)2.
Comparer les performances avant/après3.

// ❌ PROBLÈME N+1 : Sans optimisation
interface OrderRepository : JpaRepository<Order, UUID> {
 fun findByUserId(userId: UUID): List<Order>
 // 1 requête pour les orders
 // N requêtes pour charger les items de chaque order
 // M requêtes pour charger les produits de chaque item
}

// ✅ SOLUTION 1 : JOIN FETCH
interface OrderRepository : JpaRepository<Order, UUID> {
 @Query("""
 SELECT DISTINCT o FROM Order o
 JOIN FETCH o.items i
 JOIN FETCH i.product
 WHERE o.user.id = :userId
 """)

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2

http://slamwiki2.kobject.net/ Printed on 2026/01/28 04:12

 fun findByUserIdWithItems(userId: UUID): List<Order>
}

// ✅ SOLUTION 2 : @EntityGraph
interface OrderRepository : JpaRepository<Order, UUID> {
 @EntityGraph(attributePaths = ["items", "items.product"])
 fun findByUserId(userId: UUID): List<Order>
}

// ✅ SOLUTION 3 : DTO Projection
data class OrderSummaryDto(
 val id: UUID,
 val totalAmount: BigDecimal,
 val status: OrderStatus,
 val itemCount: Long,
 val createdAt: Instant
)

interface OrderRepository : JpaRepository<Order, UUID> {
 @Query("""
 SELECT new com.ecommerce.order.dto.OrderSummaryDto(
 o.id, o.totalAmount, o.status, COUNT(i), o.createdAt
)
 FROM Order o
 LEFT JOIN o.items i
 WHERE o.user.id = :userId
 GROUP BY o.id, o.totalAmount, o.status, o.createdAt
 """)
 fun findOrderSummariesByUserId(userId: UUID): List<OrderSummaryDto>
}

Partie 3 : Héritage JPA (1h)

3.1 Cas d'usage : Typologie de produits

Nouveau besoin métier :

Différencier 3 types de produits :

PhysicalProduct : poids, dimensions, frais de port
DigitalProduct : taille fichier, URL download, format
ServiceProduct : durée, date prestation

Tous partagent : id, name, price, stock, category

3.2 Implémentation avec stratégies d'héritage

À explorer (au choix ou comparaison) :

// Option 1 : SINGLE_TABLE (par défaut)
@Entity

2026/01/28 04:12 7/16 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

@Table(name = "products")
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "product_type", discriminatorType =
DiscriminatorType.STRING)
abstract class Product(
 @Column(nullable = false)
 open var name: String,

 @Column(nullable = false, precision = 10, scale = 2)
 open var price: BigDecimal,

 @Column(nullable = false)
 open var stock: Int,

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "category_id", nullable = false)
 open var category: Category
) {
 @Id
 @GeneratedValue(strategy = GenerationType.UUID)
 open var id: UUID? = null
}

@Entity
@DiscriminatorValue("PHYSICAL")
class PhysicalProduct(
 name: String,
 price: BigDecimal,
 stock: Int,
 category: Category,

 @Column(name = "weight_kg")
 var weight: Double,

 @Column(name = "dimensions")
 var dimensions: String, // "30x20x10"

 @Column(name = "shipping_cost", precision = 10, scale = 2)
 var shippingCost: BigDecimal
) : Product(name, price, stock, category)

@Entity
@DiscriminatorValue("DIGITAL")
class DigitalProduct(
 name: String,
 price: BigDecimal,
 stock: Int,
 category: Category,

 @Column(name = "file_size_mb")
 var fileSize: Double,

 @Column(name = "download_url")
 var downloadUrl: String,

 @Column(name = "file_format")

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2

http://slamwiki2.kobject.net/ Printed on 2026/01/28 04:12

 var format: String // PDF, MP4, ZIP...
) : Product(name, price, stock, category)

@Entity
@DiscriminatorValue("SERVICE")
class ServiceProduct(
 name: String,
 price: BigDecimal,
 stock: Int,
 category: Category,

 @Column(name = "duration_hours")
 var duration: Int,

 @Column(name = "service_date")
 var serviceDate: LocalDate?
) : Product(name, price, stock, category)

// Option 2 : JOINED (tables séparées)
@Entity
@Table(name = "products")
@Inheritance(strategy = InheritanceType.JOINED)
abstract class Product(
 // ... mêmes champs
)

@Entity
@Table(name = "physical_products")
class PhysicalProduct(
 // ... champs spécifiques
) : Product(...)

// Option 3 : TABLE_PER_CLASS (une table complète par classe concrète)
@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
abstract class Product(
 // ... mêmes champs
)

Exercice comparatif :

Schéma base de données généré
Requêtes SQL produites
Avantages/inconvénients de chaque stratégie

3.3 Requêtes polymorphiques

// Repository
interface ProductRepository : JpaRepository<Product, UUID> {
 // Tous types confondus
 override fun findAll(): List<Product>
 // Seulement les produits physiques
 @Query("SELECT p FROM PhysicalProduct p")

2026/01/28 04:12 9/16 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 fun findPhysicalProducts(): List<PhysicalProduct>
 // Filtrage par type
 @Query("SELECT p FROM Product p WHERE TYPE(p) = :type")
 fun findByType(type: Class<out Product>): List<Product>
}

// Controller
@RestController
@RequestMapping("/products")
class ProductController(private val repository: ProductRepository) {

 @GetMapping
 fun getProducts(@RequestParam(required = false) type: String?): List<Product> {
 return when (type?.uppercase()) {
 "PHYSICAL" -> repository.findByType(PhysicalProduct::class.java)
 "DIGITAL" -> repository.findByType(DigitalProduct::class.java)
 "SERVICE" -> repository.findByType(ServiceProduct::class.java)
 else -> repository.findAll()
 }
 }
}

Partie 4 : Hypersistence Utils - Outils avancés (30min-1h)

4.1 Introduction à Hypersistence Utils

Hypersistence Utils est une bibliothèque créée par Vlad Mihalcea qui apporte :

Des types personnalisés (JSON, Array, etc.)
Des utilitaires de diagnostic de performance
Des listeners pour optimiser les opérations
Des identifiants optimisés (Tsid)

Dépendance Maven

<dependency>
 <groupId>io.hypersistence</groupId>
 <artifactId>hypersistence-utils-hibernate-63</artifactId>
 <version>3.7.0</version>
</dependency>

4.2 Détection automatique des problèmes N+1

Objectif : Détecter automatiquement les problèmes de performance sans analyse manuelle des
logs

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2

http://slamwiki2.kobject.net/ Printed on 2026/01/28 04:12

Configuration

@Configuration
class HypersistenceConfiguration {
 @Bean
 fun queryStackTraceLogger() = QueryStackTraceLogger()
 @EventListener
 fun onApplicationReady(event: ApplicationReadyEvent) {
 // Active la détection des problèmes N+1
 QueryStackTraceLogger.INSTANCE.threshold = 10 // Alerte si > 10 requêtes
 }
}

Exercice :

Activer le logger sur l'endpoint /users/{id}/orders
Observer les alertes automatiques
Corriger les problèmes détectés

4.3 Types JSON natifs

Cas d'usage : Stocker des métadonnées flexibles sur les produits

Exemple : Attributs dynamiques produit

@Entity
@Table(name = "products")
class Product(
 @Column(nullable = false)
 var name: String,

 @Column(nullable = false, precision = 10, scale = 2)
 var price: BigDecimal,

 @Column(nullable = false)
 var stock: Int,

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "category_id")
 var category: Category,

 // ✅ Stockage JSON pour attributs dynamiques
 @Type(JsonType::class)
 @Column(columnDefinition = "json")
 var attributes: Map<String, Any> = emptyMap()
) {

2026/01/28 04:12 11/16 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 @Id
 @GeneratedValue(strategy = GenerationType.UUID)
 var id: UUID? = null
}

// Utilisation
val product = Product(
 name = "iPhone 15 Pro",
 price = BigDecimal("1199.99"),
 stock = 25,
 category = electronicsCategory,
 attributes = mapOf(
 "color" to "Titanium Blue",
 "storage" to "256GB",
 "warranty" to "2 years",
 "features" to listOf("5G", "Face ID", "A17 Pro")
)
)

Données exemple

{
 "id": "550e8400-e29b-41d4-a716-446655440020",
 "name": "iPhone 15 Pro",
 "price": 1199.99,
 "stock": 25,
 "categoryId": "550e8400-e29b-41d4-a716-446655440010",
 "attributes": {
 "color": "Titanium Blue",
 "storage": "256GB",
 "warranty": "2 years",
 "features": ["5G", "Face ID", "A17 Pro"]
 }
}

Exercice :

Ajouter le champ attributes à Product
Créer un endpoint GET /products/{id}/attributes
Filtrer les produits par attribut : GET /products?attr.color=Blue

4.4 Optimisation des identifiants avec Tsid

Tsid (Time-Sorted Identifiers) :

Alternative performante aux UUID
Triables chronologiquement
Plus compacts (Long au lieu de UUID)
Meilleure performance en base

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2

http://slamwiki2.kobject.net/ Printed on 2026/01/28 04:12

Comparaison UUID vs Tsid

// Avant (UUID)
@Entity
class Review(
 @Id
 @GeneratedValue(strategy = GenerationType.UUID)
 var id: UUID? = null,
 // ...
)

// Après (Tsid) - Pour nouvelles entités
@Entity
@Table(name = "reviews")
class Review(
 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "product_id", nullable = false)
 val product: Product,

 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "user_id", nullable = false)
 val author: User,

 @Column(nullable = false)
 val rating: Int, // 1-5

 @Column(nullable = false, length = 200)
 val title: String,

 @Column(nullable = false, length = 2000)
 val comment: String,

 @Column(nullable = false)
 var verified: Boolean = false,

 @Column(nullable = false)
 var helpfulCount: Int = 0,

 @Column(nullable = false)
 val createdAt: Instant = Instant.now(),

 @Column(nullable = false)
 var updatedAt: Instant = Instant.now()
) {
 @Id
 @TsidGenerator
 var id: Long? = null

 init {
 require(rating in 1..5) { "Rating must be between 1 and 5" }
 require(title.isNotBlank()) { "Title cannot be blank" }
 require(comment.isNotBlank()) { "Comment cannot be blank" }
 require(helpfulCount >= 0) { "Helpful count cannot be negative" }
 }

2026/01/28 04:12 13/16 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

}

Exercice optionnel :

Créer une nouvelle entité Review avec Tsid
Comparer les performances d'insertion (benchmark)

Review

id : Long
rating : Integer
title : String
comment : String
verified : Boolean
helpfulCount : Integer
createdAt : LocalDateTime
updatedAt : LocalDateTime

Product

id : UUID
name : String
price : BigDecimal
stock : Integer

User

id : UUID
username : String
email : String

Contraintes métier :
• rating ∈ [1..5]
• 1 review max par (user, product)
• verified = true si achat confirmé
• helpfulCount >= 0

Tsid Generator pour l'id
(performance + tri chronologique)

product
1

0..*
author

1

0..*

4.5 Monitoring des requêtes en temps réel

DataSourceProxyBeanPostProcessor

@Configuration
class DataSourceProxyConfiguration {
 @Bean
 fun dataSourceProxyBeanPostProcessor() = object :
DataSourceProxyBeanPostProcessor() {
 override fun createDataSourceProxy(dataSource: DataSource): DataSourceProxy
{
 return DataSourceProxy(dataSource, QueryCountHolder())
 }
 }
}

Exercice :

Mettre en place le monitoring
Créer un test d'intégration qui vérifie le nombre exact de requêtes
Exemple : assertQueryCount(3) après un appel API

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2

http://slamwiki2.kobject.net/ Printed on 2026/01/28 04:12

@SpringBootTest
@AutoConfigureMockMvc
@ActiveProfiles("test")
@Transactional
class OrderPerformanceTest {

 @Autowired
 private lateinit var mockMvc: MockMvc

 @Test
 fun `should not trigger N+1 queries when fetching user orders`() {
 // Given
 val userId = createUserWithOrders()

 // When
 SQLStatementCountValidator.reset()
 mockMvc.perform(get("/users/$userId/orders"))
 .andExpect(status().isOk)

 // Then - Vérifier le nombre de requêtes SQL
 assertSelectCount(2) // 1 pour User + 1 pour Orders avec items (JOIN FETCH)
 }
}

4.6 Exercice intégratif

Mission : Améliorer l'endpoint recommendations

// GET /users/{id}/recommendations

Avec Hypersistence :

Détecter automatiquement les problèmes N+1
Limiter à 5 requêtes maximum (assertion en test)
Stocker les préférences utilisateur en JSON
Logger les performances de la recommandation

Structure JSON recommandée :

@Entity
@Table(name = "users")
class User(
 @Column(nullable = false)
 var name: String,

 @Column(nullable = false, unique = true)
 var email: String,

 // ✅ Préférences stockées en JSON
 @Type(JsonType::class)

2026/01/28 04:12 15/16 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 @Column(columnDefinition = "json")
 var preferences: UserPreferences = UserPreferences()
) {
 @Id
 @GeneratedValue(strategy = GenerationType.UUID)
 var id: UUID? = null
}

data class UserPreferences(
 val priceRange: PriceRange = PriceRange(),
 val brands: List<String> = emptyList(),
 val excludeCategories: List<UUID> = emptyList()
)

data class PriceRange(
 val min: BigDecimal = BigDecimal.ZERO,
 val max: BigDecimal = BigDecimal("10000")
)

Configuration complète

application.properties - Configuration complète Séance 2

H2 Database
spring.datasource.url=jdbc:h2:file:./data/ecommerce
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=

H2 Console
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

JPA/Hibernate
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true
spring.jpa.properties.hibernate.use_sql_comments=true
spring.jpa.properties.hibernate.generate_statistics=true

Logging SQL et statistiques
logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type.descriptor.sql.BasicBinder=TRACE
logging.level.org.hibernate.stat=DEBUG
logging.level.org.hibernate.orm.jdbc.bind=TRACE

Hypersistence Utils
logging.level.io.hypersistence.utils=DEBUG

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2

http://slamwiki2.kobject.net/ Printed on 2026/01/28 04:12

Livrables attendus

Priorités (4h)

Must have :

✅ Associations Order/OrderItem/User complètes avec tests
✅ Résolution problème N+1 sur au moins 2 endpoints
✅ Implémentation héritage produits (1 stratégie au choix)
✅ Hypersistence : détection automatique N+1 activée
✅ Tests d'intégration validant les performances

Nice to have :

Comparaison des 3 stratégies d'héritage
Type JSON pour attributs dynamiques produits
Tsid sur une nouvelle entité (Review, Wishlist…)
Benchmark avant/après optimisations avec query count assertions
Documentation des choix architecturaux

Ressources

Hibernate Performance Best Practices
Hypersistence Utils GitHub
Documentation officielle Hypersistence
Spring Data JPA Query Methods
Kotlin JPA Plugin

Conseils :

Commencer par les associations avant l'optimisation
Toujours mesurer avant d'optimiser (logs SQL)
L'héritage n'est pas toujours la meilleure solution (composition > héritage)
Privilégier @ManyToOne LAZY par défaut
Utiliser des data classes pour les DTOs
Attention aux classes ouvertes (open) nécessaires pour JPA en Kotlin

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2

Last update: 2025/11/09 16:30

https://vladmihalcea.com/tutorials/hibernate/
https://github.com/vladmihalcea/hypersistence-utils
https://hypersistence.io/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods
https://kotlinlang.org/docs/jpa.html
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2

	2 - JPA Avancé et Optimisation
	Objectifs pédagogiques
	Partie 1 : Associations JPA (1h30)
	1.1 Implémentation des associations manquantes
	1.2 Exercice pratique : Orders & OrderItems
	Chargement minimaliste

	Partie 2 : Problèmes de performance (1h30)
	2.1 Diagnostic du problème N+1
	2.2 Solutions d'optimisation

	Partie 3 : Héritage JPA (1h)
	3.1 Cas d'usage : Typologie de produits
	3.2 Implémentation avec stratégies d'héritage
	3.3 Requêtes polymorphiques

	Partie 4 : Hypersistence Utils - Outils avancés (30min-1h)
	4.1 Introduction à Hypersistence Utils
	Dépendance Maven

	4.2 Détection automatique des problèmes N+1
	Configuration

	4.3 Types JSON natifs
	Exemple : Attributs dynamiques produit
	Données exemple

	4.4 Optimisation des identifiants avec Tsid
	Comparaison UUID vs Tsid

	4.5 Monitoring des requêtes en temps réel
	DataSourceProxyBeanPostProcessor

	4.6 Exercice intégratif

	Configuration complète
	Livrables attendus
	Priorités (4h)

	Ressources

