
2026/02/09 05:16 1/4 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

2 - JPA Avancé et Optimisation

Séance 2 (4h)

Contexte : fil rouge e-commerce

Objectifs pédagogiques

Maîtriser les associations bidirectionnelles et leurs pièges
Comprendre et résoudre les problèmes N+1
Utiliser l'héritage JPA à bon escient
Optimiser les requêtes avec fetch strategies et projections

Partie 1 : Associations JPA (1h30)

1.1 Implémentation des associations manquantes

À réaliser :

Compléter Order ↔ OrderItem (bidirectionnel)
Implémenter Order → User (unidirectionnel)
Gérer User ↔ Category (preferences, Many-to-Many)
Ajouter @JsonIgnore / @JsonManagedReference pour éviter les boucles

Points d'attention :

Choix du côté propriétaire (mappedBy)
Cascade types appropriés
Orphan removal
Lazy vs Eager loading

1.2 Exercice pratique : Orders & OrderItems

// Contraintes métier à implémenter
- Un Order doit toujours avoir au moins 1 OrderItem
- Suppression d'un Order → suppression des OrderItems
- totalAmount calculé automatiquement
- Gestion du stock produit lors de la création

Tests attendus :

Création d'une commande avec items
Calcul automatique du total
Mise à jour du stock
Suppression en cascade

Last update: 2025/10/07 23:35 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759872946

http://slamwiki2.kobject.net/ Printed on 2026/02/09 05:16

Partie 2 : Problèmes de performance (1h30)

2.1 Diagnostic du problème N+1

Scénario :

GET /users/{id}/orders
// Retourne les commandes avec leurs items et produits

Mission :

Activer les logs SQL (spring.jpa.show-sql=true)1.
Identifier le problème N+12.
Compter le nombre de requêtes générées3.

2.2 Solutions d'optimisation

À implémenter et comparer :

Solution Cas d'usage Avantages Inconvénients
@EntityGraph Requêtes standards Simple Moins flexible
JOIN FETCH Requêtes complexes Contrôle total Code JPQL
@BatchSize Lazy loading Transparent Moins optimal
DTO Projection Lecture seule Performances max Plus de code

Exercices :

Optimiser /users/{id}/orders avec JOIN FETCH1.
Créer une projection pour /products (liste)2.
Comparer les performances avant/après3.

Partie 3 : Héritage JPA (1h)

3.1 Cas d'usage : Typologie de produits

Nouveau besoin métier :

Différencier 3 types de produits :

PhysicalProduct : poids, dimensions, frais de port
DigitalProduct : taille fichier, URL download, format
ServiceProduct : durée, date prestation

Tous partagent : id, name, price, stock, category

2026/02/09 05:16 3/4 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

3.2 Implémentation avec stratégies d'héritage

À explorer (au choix ou comparaison) :

// Option 1 : SINGLE_TABLE (par défaut)
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "product_type")

// Option 2 : JOINED
@Inheritance(strategy = InheritanceType.JOINED)

// Option 3 : TABLE_PER_CLASS
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)

Exercice comparatif :

Schéma base de données généré
Requêtes SQL produites
Avantages/inconvénients de chaque stratégie

3.3 Requêtes polymorphiques

// Repository
List<Product> findAll(); // Tous types confondus
List<PhysicalProduct> findPhysicalProducts();

// Nouveaux endpoints
GET /products?type=PHYSICAL
GET /products?type=DIGITAL

Livrables attendus

Priorités (4h)

Must have :

✅ Associations Order/OrderItem/User complètes avec tests
✅ Résolution problème N+1 sur au moins 2 endpoints
✅ Implémentation héritage produits (1 stratégie au choix)
✅ Tests d'intégration validant les performances

Nice to have :

Comparaison des 3 stratégies d'héritage
DTO Projections avec MapStruct
Benchmark avant/après optimisations
Documentation des choix architecturaux

Last update: 2025/10/07 23:35 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759872946

http://slamwiki2.kobject.net/ Printed on 2026/02/09 05:16

Critères d'évaluation
Critère Points
Associations correctement mappées 25%
Résolution problèmes N+1 30%
Implémentation héritage 25%
Tests et qualité code 20%

Configuration supplémentaire

application.yml - pour la séance
spring:
 jpa:
 show-sql: true
 properties:
 hibernate:
 format_sql: true
 use_sql_comments: true
 generate_statistics: true # Pour mesurer les perfs
logging:
 level:
 org.hibernate.stat: DEBUG # Statistiques Hibernate

Ressources

Hibernate Performance Best Practices
Spring Data JPA Query Methods

Conseils :

Commencer par les associations avant l'optimisation
Toujours mesurer avant d'optimiser (logs SQL)
L'héritage n'est pas toujours la meilleure solution (composition > héritage)
Privilégier @ManyToOne LAZY par défaut

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759872946

Last update: 2025/10/07 23:35

https://vladmihalcea.com/tutorials/hibernate/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759872946

	2 - JPA Avancé et Optimisation
	Objectifs pédagogiques
	Partie 1 : Associations JPA (1h30)
	1.1 Implémentation des associations manquantes
	1.2 Exercice pratique : Orders & OrderItems

	Partie 2 : Problèmes de performance (1h30)
	2.1 Diagnostic du problème N+1
	2.2 Solutions d'optimisation

	Partie 3 : Héritage JPA (1h)
	3.1 Cas d'usage : Typologie de produits
	3.2 Implémentation avec stratégies d'héritage
	3.3 Requêtes polymorphiques

	Livrables attendus
	Priorités (4h)

	Critères d'évaluation
	Configuration supplémentaire
	Ressources

