2026/01/30 08:14 1/5

2 - JPA Avancé et Optimisation

2 - JPA Avancé et Optimisation

Séance 2 (4h)

Contexte : fil rouge e-commerce

Objectifs pédagogiques

Maitriser les associations bidirectionnelles et leurs piéges
Comprendre et résoudre les problémes N+1

Utiliser I'héritage JPA a bon escient

Optimiser les requétes avec fetch strategies et projections

Partie 1 : Associations JPA (1h30)

1.1 Implémentation des associations manquantes

Points d'attention :

Choix du c6té propriétaire (mappedBy)
Cascade types appropriés

Orphan removal

Lazy vs Eager loading

1.2 Exercice pratique : Orders & Orderltems

// Contraintes métier a implémenter

- Un Order doit toujours avoir au moins 1 OrderItem

- Suppression d'un Order - suppression des OrderItems
- totalAmount calculé automatiquement

- Gestion du stock produit lors de la création

Tests attendus :

e Création d'une commande avec items
¢ Calcul automatique du total

e Mise a jour du stock

e Suppression en cascade

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2025/10/07 23:40 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759873254

Partie 2 : Problemes de performance (1h30)

2.1 Diagnostic du probleme N+1

GET /users/{id}/orders
// Retourne les commandes avec leurs items et produits

Mission :

1. Activer les logs SQL (spring.jpa.show-sql=true)
2. Identifier le probleme N+1
3. Compter le nombre de requétes générées

2.2 Solutions d'optimisation

A implémenter et comparer :

Solution Cas d'usage Avantages Inconvénients
@EntityGraph|Requétes standards |Simple Moins flexible
JOIN FETCH |Requétes complexes|Contréle total Code JPQL
@BatchSize |Lazy loading Transparent Moins optimal
DTO Projection |Lecture seule Performances max|Plus de code
Exercices :

1. Optimiser /users/{id}/orders avec JOIN FETCH
2. Créer une projection pour /products (liste)
3. Comparer les performances avant/apres

Partie 3 : Héritage JPA (1h)
3.1 Cas d'usage : Typologie de produits

Nouveau besoin métier :
Différencier 3 types de produits :

¢ PhysicalProduct : poids, dimensions, frais de port
¢ DigitalProduct : taille fichier, URL download, format
» ServiceProduct : durée, date prestation

Tous partagent : id, name, price, stock, category

http://slamwiki2.kobject.net/ Printed on 2026/01/30 08:14



2026/01/30 08:14 3/5

2 - JPA Avancé et Optimisation

3.2 Implémentation avec stratégies d'héritage

A explorer (au choix ou comparaison) :

// Option 1 : SINGLE TABLE (par défaut)
@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@iscriminatorColumn(name = "product type")

// Option 2 : JOINED
@Inheritance(strategy = InheritanceType.JOINED)

// Option 3 : TABLE PER CLASS
@Inheritance(strategy = InheritanceType.TABLE PER CLASS)

Exercice comparatif :

e Schéma base de données généré
¢ Requétes SQL produites
¢ Avantages/inconvénients de chaque stratégie

3.3 Requétes polymorphiques

// Repository
List<Product> findAll(); // Tous types confondus
List<PhysicalProduct> findPhysicalProducts();

// Nouveaux endpoints
GET /products?type=PHYSICAL
GET /products?type=DIGITAL

Livrables attendus

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2025/10/07 23:40 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759873254

Criteres d'évaluation

Critere Points
Associations correctement mappées|25%
Résolution problémes N+1 30%
Implémentation héritage 25%
Tests et qualité code 20%

Configuration supplémentaire

Voici la configuration en application.properties :
# Application properties - Séance 2

# H2 Database
spring.datasource.url=jdbc:h2:file:./data/ecommerce
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=

# H2 Console (optionnel, pour debug)
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

# JPA/Hibernate

spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format sql=true
spring.jpa.properties.hibernate.use sql comments=true
spring.jpa.properties.hibernate.generate statistics=true

# Logging SQL et statistiques Hibernate

logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type.descriptor.sql.BasicBinder=TRACE
logging.level.org.hibernate.stat=DEBUG
logging.level.org.hibernate.engine.internal.StatisticallLoggingSessionEventListener=
WARN

# Pour voir les parameétres des requétes (optionnel mais utile)
logging.level.org.hibernate.orm. jdbc.bind=TRACE

Ressources

e Hibernate Performance Best Practices
¢ Spring Data JPA Query Methods

http://slamwiki2.kobject.net/ Printed on 2026/01/30 08:14


https://vladmihalcea.com/tutorials/hibernate/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods

2026/01/30 08:14 5/5 2 - JPA Avancé et Optimisation

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759873254

Last update: 2025/10/07 23:40

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759873254

	2 - JPA Avancé et Optimisation
	Objectifs pédagogiques
	Partie 1 : Associations JPA (1h30)
	1.1 Implémentation des associations manquantes
	1.2 Exercice pratique : Orders & OrderItems

	Partie 2 : Problèmes de performance (1h30)
	2.1 Diagnostic du problème N+1
	2.2 Solutions d'optimisation

	Partie 3 : Héritage JPA (1h)
	3.1 Cas d'usage : Typologie de produits
	3.2 Implémentation avec stratégies d'héritage
	3.3 Requêtes polymorphiques

	Livrables attendus
	Priorités (4h)

	Critères d'évaluation
	Configuration supplémentaire
	Ressources


