2026/02/01 05:46 1/9

2 - JPA Avancé et Optimisation

2 - JPA Avancé et Optimisation

Séance 2 (4h)

Contexte : fil rouge e-commerce

Objectifs pédagogiques

Maitriser les associations bidirectionnelles et leurs piéges
Comprendre et résoudre les problémes N+1

Utiliser I'héritage JPA a bon escient

Optimiser les requétes avec fetch strategies et projections

Partie 1 : Associations JPA (1h30)

1.1 Implémentation des associations manquantes

Points d'attention :

Choix du c6té propriétaire (mappedBy)
Cascade types appropriés

Orphan removal

Lazy vs Eager loading

1.2 Exercice pratique : Orders & Orderltems

// Contraintes métier a implémenter

- Un Order doit toujours avoir au moins 1 OrderItem

- Suppression d'un Order - suppression des OrderItems
- totalAmount calculé automatiquement

- Gestion du stock produit lors de la création

Tests attendus :

e Création d'une commande avec items
¢ Calcul automatique du total

e Mise a jour du stock

e Suppression en cascade

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/08 00:12 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875164

Partie 2 : Problemes de performance (1h30)

2.1 Diagnostic du probleme N+1

GET /users/{id}/orders
// Retourne les commandes avec leurs items et produits

Mission :

1. Activer les logs SQL (spring.jpa.show-sql=true)
2. Identifier le probleme N+1
3. Compter le nombre de requétes générées

2.2 Solutions d'optimisation

A implémenter et comparer :

Solution Cas d'usage Avantages Inconvénients
@EntityGraph|Requétes standards |Simple Moins flexible
JOIN FETCH |Requétes complexes|Contréle total Code JPQL
@BatchSize |Lazy loading Transparent Moins optimal
DTO Projection |Lecture seule Performances max|Plus de code
Exercices :

1. Optimiser /users/{id}/orders avec JOIN FETCH
2. Créer une projection pour /products (liste)
3. Comparer les performances avant/apres

Partie 3 : Héritage JPA (1h)
3.1 Cas d'usage : Typologie de produits

Nouveau besoin métier :
Différencier 3 types de produits :

¢ PhysicalProduct : poids, dimensions, frais de port
¢ DigitalProduct : taille fichier, URL download, format
» ServiceProduct : durée, date prestation

Tous partagent : id, name, price, stock, category

http://slamwiki2.kobject.net/ Printed on 2026/02/01 05:46

2026/02/01 05:46 3/9

2 - JPA Avancé et Optimisation

3.2 Implémentation avec stratégies d'héritage

A explorer (au choix ou comparaison) :

// Option 1 : SINGLE TABLE (par défaut)
@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@iscriminatorColumn(name = "product type")

// Option 2 : JOINED
@Inheritance(strategy = InheritanceType.JOINED)

// Option 3 : TABLE PER CLASS
@Inheritance(strategy = InheritanceType.TABLE PER CLASS)

Exercice comparatif :

e Schéma base de données généré
¢ Requétes SQL produites
¢ Avantages/inconvénients de chaque stratégie

3.3 Requétes polymorphiques

// Repository
List<Product> findAll(); // Tous types confondus
List<PhysicalProduct> findPhysicalProducts();

// Nouveaux endpoints
GET /products?type=PHYSICAL
GET /products?type=DIGITAL

Partie 4 : Hypersistence Utils - Outils avancés (30min-1h)

4.1 Introduction a Hypersistence Utils

Dépendance Maven

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/08 00:12 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875164

<dependency>
<groupld>io.hypersistence</groupId>
<artifactId>hypersistence-utils-hibernate-63</artifactId>
<version>3.7.0</version>

</dependency>

4.2 Détection automatique des problemes N+1

Configuration

application.properties - Ajout pour Hypersistence

Détection des problemes N+1
logging.level.io.hypersistence.utils=DEBUG

Limites d'alerte (optionnel)
hypersistence.query.fail.on.pagination.over.collection. fetch=false

Utilisation du QueryStackTraceLogger

// Configuration globale (classe @Configuration)
@Configuration
public class HypersistenceConfiguration {
@Bean
public QueryStackTracelLogger queryStackTraceLogger() {
return new QueryStackTracelLogger();

}

@EventListener

public void onApplicationEvent(ApplicationReadyEvent event) {
// Active la détection des problémes N+1
QueryStackTraceLogger.INSTANCE.setThreshold(10); // Alerte si > 10 requétes

Exercice :

o Activer le logger sur I'endpoint /users/{id}/orders
e Observer les alertes automatiques
e Corriger les problémes détectés

http://slamwiki2.kobject.net/ Printed on 2026/02/01 05:46

2026/02/01 05:46 5/9 2 - JPA Avancé et Optimisation

4.3 Types JSON natifs

Exemple : Attributs dynamiques produit

@Entity
@Table(name = "products")
public class Product {
// ... attributs existants
@Type(JsonType.class)
@Column(columnDefinition = "json")
private Map<String, Object> attributes;
// Pour PhysicalProduct : {"weight": 2.5, "dimensions": "30x20x10"}
// Pour DigitalProduct : {"fileSize": "1.2GB", "format": "PDF"}

Données exemple

{
"id": "550e8400-e29b-41d4-a716-446655440020",
"name": "iPhone 15 Pro",
"price": 1199.99,
"stock": 25,
"categoryId": "550e8400-e29b-41d4-a716-446655440010",
"attributes": {
"color": "Titanium Blue",
"storage": "256GB",
"warranty": "2 years"
}
}
Exercice :

e Ajouter le champ attributes a Product
e Créer un endpoint GET /products/{id}/attributes
e Filtrer les produits par attribut : GET /products?attr.color=Blue

4.4 Optimisation des identifiants avec Tsid

-

|

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/08 00:12 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875164

Comparaison UUID vs Tsid

// Avant (UUID)
@Id

@GeneratedValue(strategy = GenerationType.UUID)

private UUID id;

// Apres (Tsid) - Pour nouvelles entités
@Id

@TsidGenerator

private Long id;

Exercice optionnel :

e Créer une nouvelle entité Review avec Tsid
e Comparer les performances d'insertion (benchmark)

@startuml
Review Entity

Idefine ENTITY class
Idefine PK
!define FK

ENTITY Review {

PK id : Long @TsidGenerator
FK productid : UUID

FK userid : UUID

rating : Integer (1-5)

title : String

comment : String

verified : Boolean
helpfulCount : Integer
createdAt : LocalDateTime
updatedAt : LocalDateTime

}

ENTITY Product {
PKid : UUID
name : String

}

http://slamwiki2.kobject.net/

Printed on 2026/02/01 05:46

2026/02/01 05:46 7/9 2 - JPA Avancé et Optimisation

ENTITY User {
PKid : UUID
username : String

}
Review "0..*" --> "1" Product : reviews
Review "0..*" --> "1" User : author

note right of Review

*Contraintes métier :**

* rating entre 1 et 5

* verified = true si achat confirmé

* helpfulCount initialisé a 0

e Utilisateur = 1 review max par produit
end note

note top of Review::id
Tsid pour performance
et tri chronologique

end note

@enduml

4.5 Monitoring des requétes en temps réel

DataSourceProxyBeanPostProcessor

@Configuration
public class DataSourceProxyConfiguration {
@Bean
public DataSourceProxyBeanPostProcessor dataSourceProxyBeanPostProcessor() {
return new DataSourceProxyBeanPostProcessor() {
@Override
protected DataSourceProxy createDataSourceProxy(DataSource dataSource)

{
return new DataSourceProxy(dataSource, new QueryCountHolder());
}
b
}
}
Exercice :

¢ Mettre en place le monitoring
e Créer un test d'intégration qui vérifie le nombre exact de requétes
e Exemple : assertQueryCount(3) aprés un appel API

4.6 Exercice intégratif

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/08 00:12 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875164

! ‘GET /users/{id}/recommendations '

Avec Hypersistence :

o Détecter automatiquement les problemes N+1

Limiter a 5 requétes maximum (assertion en test)
Stocker les préférences utilisateur en JSON
Logger les performances de la recommandation

Structure JSON recommandée :

// User.preferences (JSON)

{

"priceRange": {"min": 50, "max": 500},
"brands": ["Apple", "Samsung"],
"excludeCategories": ["550e8400-..."]

}

Configuration complete

application.properties - Configuration complete Séance 2

H2 Database

spring.datasource.
spring.datasource.
spring.datasource.
spring.datasource.

H2 Console

spring.h2.console.
spring.h2.console.

JPA/Hibernate

url=jdbc:h2:file:./data/ecommerce
driverClassName=org.h2.Driver
username=sa

password=

enabled=true
path=/h2-console

spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format sql=true
spring.jpa.properties.hibernate.use sql comments=true
spring.jpa.properties.hibernate.generate statistics=true

Logging SQL et statistiques

logging.level.org.
logging.level.org.
logging.level.org.
logging.level.org.

hibernate.SQL=DEBUG
hibernate.type.descriptor.sqgl.BasicBinder=TRACE
hibernate.stat=DEBUG
hibernate.orm.jdbc.bind=TRACE

Hypersistence Utils
logging.level.io.hypersistence.utils=DEBUG

http://slamwiki2.kobject.net/

Printed on 2026/02/01 05:46

2026/02/01 05:46 9/9 2 - JPA Avancé et Optimisation

Livrables attendus

Ressources

Hibernate Performance Best Practices
Hypersistence Utils GitHub
Documentation officielle Hypersistence
Spring Data JPA Query Methods

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875164

Last update: 2025/10/08 00:12

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://vladmihalcea.com/tutorials/hibernate/
https://github.com/vladmihalcea/hypersistence-utils
https://hypersistence.io/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875164

	2 - JPA Avancé et Optimisation
	Objectifs pédagogiques
	Partie 1 : Associations JPA (1h30)
	1.1 Implémentation des associations manquantes
	1.2 Exercice pratique : Orders & OrderItems

	Partie 2 : Problèmes de performance (1h30)
	2.1 Diagnostic du problème N+1
	2.2 Solutions d'optimisation

	Partie 3 : Héritage JPA (1h)
	3.1 Cas d'usage : Typologie de produits
	3.2 Implémentation avec stratégies d'héritage
	3.3 Requêtes polymorphiques

	Partie 4 : Hypersistence Utils - Outils avancés (30min-1h)
	4.1 Introduction à Hypersistence Utils
	Dépendance Maven

	4.2 Détection automatique des problèmes N+1
	Configuration
	Utilisation du QueryStackTraceLogger

	4.3 Types JSON natifs
	Exemple : Attributs dynamiques produit
	Données exemple

	4.4 Optimisation des identifiants avec Tsid
	Comparaison UUID vs Tsid

	4.5 Monitoring des requêtes en temps réel
	DataSourceProxyBeanPostProcessor

	4.6 Exercice intégratif

	Configuration complète
	Livrables attendus
	Priorités (4h)

	Ressources

