
2026/01/28 01:36 1/9 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

2 - JPA Avancé et Optimisation

Séance 2 (4h)

Contexte : fil rouge e-commerce

Objectifs pédagogiques

Maîtriser les associations bidirectionnelles et leurs pièges
Comprendre et résoudre les problèmes N+1
Utiliser l'héritage JPA à bon escient
Optimiser les requêtes avec fetch strategies et projections

Partie 1 : Associations JPA (1h30)

1.1 Implémentation des associations manquantes

À réaliser :

Compléter Order ↔ OrderItem (bidirectionnel)
Implémenter Order → User (unidirectionnel)
Gérer User ↔ Category (preferences, Many-to-Many)
Ajouter @JsonIgnore / @JsonManagedReference pour éviter les boucles

Points d'attention :

Choix du côté propriétaire (mappedBy)
Cascade types appropriés
Orphan removal
Lazy vs Eager loading

1.2 Exercice pratique : Orders & OrderItems

// Contraintes métier à implémenter
- Un Order doit toujours avoir au moins 1 OrderItem
- Suppression d'un Order → suppression des OrderItems
- totalAmount calculé automatiquement
- Gestion du stock produit lors de la création

Tests attendus :

Création d'une commande avec items
Calcul automatique du total
Mise à jour du stock
Suppression en cascade

Last update: 2025/10/08 00:18 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875525

http://slamwiki2.kobject.net/ Printed on 2026/01/28 01:36

Partie 2 : Problèmes de performance (1h30)

2.1 Diagnostic du problème N+1

Scénario :

GET /users/{id}/orders
// Retourne les commandes avec leurs items et produits

Mission :

Activer les logs SQL (spring.jpa.show-sql=true)1.
Identifier le problème N+12.
Compter le nombre de requêtes générées3.

2.2 Solutions d'optimisation

À implémenter et comparer :

Solution Cas d'usage Avantages Inconvénients
@EntityGraph Requêtes standards Simple Moins flexible
JOIN FETCH Requêtes complexes Contrôle total Code JPQL
@BatchSize Lazy loading Transparent Moins optimal
DTO Projection Lecture seule Performances max Plus de code

Exercices :

Optimiser /users/{id}/orders avec JOIN FETCH1.
Créer une projection pour /products (liste)2.
Comparer les performances avant/après3.

Partie 3 : Héritage JPA (1h)

3.1 Cas d'usage : Typologie de produits

Nouveau besoin métier :

Différencier 3 types de produits :

PhysicalProduct : poids, dimensions, frais de port
DigitalProduct : taille fichier, URL download, format
ServiceProduct : durée, date prestation

Tous partagent : id, name, price, stock, category

2026/01/28 01:36 3/9 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

3.2 Implémentation avec stratégies d'héritage

À explorer (au choix ou comparaison) :

// Option 1 : SINGLE_TABLE (par défaut)
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "product_type")

// Option 2 : JOINED
@Inheritance(strategy = InheritanceType.JOINED)

// Option 3 : TABLE_PER_CLASS
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)

Exercice comparatif :

Schéma base de données généré
Requêtes SQL produites
Avantages/inconvénients de chaque stratégie

3.3 Requêtes polymorphiques

// Repository
List<Product> findAll(); // Tous types confondus
List<PhysicalProduct> findPhysicalProducts();

// Nouveaux endpoints
GET /products?type=PHYSICAL
GET /products?type=DIGITAL

Partie 4 : Hypersistence Utils - Outils avancés (30min-1h)

4.1 Introduction à Hypersistence Utils

Hypersistence Utils est une bibliothèque créée par Vlad Mihalcea qui apporte :

Des types personnalisés (JSON, Array, etc.)
Des utilitaires de diagnostic de performance
Des listeners pour optimiser les opérations
Des identifiants optimisés (Tsid)

Dépendance Maven

Last update: 2025/10/08 00:18 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875525

http://slamwiki2.kobject.net/ Printed on 2026/01/28 01:36

<dependency>
 <groupId>io.hypersistence</groupId>
 <artifactId>hypersistence-utils-hibernate-63</artifactId>
 <version>3.7.0</version>
</dependency>

4.2 Détection automatique des problèmes N+1

Objectif : Détecter automatiquement les problèmes de performance sans analyse manuelle des
logs

Configuration

application.properties - Ajout pour Hypersistence

Détection des problèmes N+1
logging.level.io.hypersistence.utils=DEBUG

Limites d'alerte (optionnel)
hypersistence.query.fail.on.pagination.over.collection.fetch=false

Utilisation du QueryStackTraceLogger

// Configuration globale (classe @Configuration)
@Configuration
public class HypersistenceConfiguration {
 @Bean
 public QueryStackTraceLogger queryStackTraceLogger() {
 return new QueryStackTraceLogger();
 }
 @EventListener
 public void onApplicationEvent(ApplicationReadyEvent event) {
 // Active la détection des problèmes N+1
 QueryStackTraceLogger.INSTANCE.setThreshold(10); // Alerte si > 10 requêtes
 }
}

Exercice :

Activer le logger sur l'endpoint /users/{id}/orders
Observer les alertes automatiques
Corriger les problèmes détectés

2026/01/28 01:36 5/9 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

4.3 Types JSON natifs

Cas d'usage : Stocker des métadonnées flexibles sur les produits

Exemple : Attributs dynamiques produit

@Entity
@Table(name = "products")
public class Product {
 // ... attributs existants
 @Type(JsonType.class)
 @Column(columnDefinition = "json")
 private Map<String, Object> attributes;
 // Pour PhysicalProduct : {"weight": 2.5, "dimensions": "30x20x10"}
 // Pour DigitalProduct : {"fileSize": "1.2GB", "format": "PDF"}
}

Données exemple

{
 "id": "550e8400-e29b-41d4-a716-446655440020",
 "name": "iPhone 15 Pro",
 "price": 1199.99,
 "stock": 25,
 "categoryId": "550e8400-e29b-41d4-a716-446655440010",
 "attributes": {
 "color": "Titanium Blue",
 "storage": "256GB",
 "warranty": "2 years"
 }
}

Exercice :

Ajouter le champ attributes à Product
Créer un endpoint GET /products/{id}/attributes
Filtrer les produits par attribut : GET /products?attr.color=Blue

4.4 Optimisation des identifiants avec Tsid

Tsid (Time-Sorted Identifiers) :

Alternative performante aux UUID
Triables chronologiquement

Last update: 2025/10/08 00:18 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875525

http://slamwiki2.kobject.net/ Printed on 2026/01/28 01:36

Plus compacts (Long au lieu de UUID)
Meilleure performance en base

Comparaison UUID vs Tsid

// Avant (UUID)
@Id
@GeneratedValue(strategy = GenerationType.UUID)
private UUID id;

// Après (Tsid) - Pour nouvelles entités
@Id
@TsidGenerator
private Long id;

Exercice optionnel :

Créer une nouvelle entité Review avec Tsid
Comparer les performances d'insertion (benchmark)

Review

id : Long
rating : Integer
title : String
comment : String
verified : Boolean
helpfulCount : Integer
createdAt : LocalDateTime
updatedAt : LocalDateTime

Product

id : UUID
name : String
price : BigDecimal
stock : Integer

User

id : UUID
username : String
email : String

Contraintes métier :
• rating ∈ [1..5]
• 1 review max par (user, product)
• verified = true si achat confirmé
• helpfulCount >= 0

Tsid Generator pour l'id
(performance + tri chronologique)

product
1

0..*
author

1

0..*

4.5 Monitoring des requêtes en temps réel

DataSourceProxyBeanPostProcessor

@Configuration

2026/01/28 01:36 7/9 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

public class DataSourceProxyConfiguration {
 @Bean
 public DataSourceProxyBeanPostProcessor dataSourceProxyBeanPostProcessor() {
 return new DataSourceProxyBeanPostProcessor() {
 @Override
 protected DataSourceProxy createDataSourceProxy(DataSource dataSource)
{
 return new DataSourceProxy(dataSource, new QueryCountHolder());
 }
 };
 }
}

Exercice :

Mettre en place le monitoring
Créer un test d'intégration qui vérifie le nombre exact de requêtes
Exemple : assertQueryCount(3) après un appel API

4.6 Exercice intégratif

Mission : Améliorer l'endpoint recommendations

GET /users/{id}/recommendations

Avec Hypersistence :

Détecter automatiquement les problèmes N+1
Limiter à 5 requêtes maximum (assertion en test)
Stocker les préférences utilisateur en JSON
Logger les performances de la recommandation

Structure JSON recommandée :

// User.preferences (JSON)
{
 "priceRange": {"min": 50, "max": 500},
 "brands": ["Apple", "Samsung"],
 "excludeCategories": ["550e8400-..."]
}

Configuration complète

Last update: 2025/10/08 00:18 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875525

http://slamwiki2.kobject.net/ Printed on 2026/01/28 01:36

application.properties - Configuration complète Séance 2

H2 Database
spring.datasource.url=jdbc:h2:file:./data/ecommerce
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=

H2 Console
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

JPA/Hibernate
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true
spring.jpa.properties.hibernate.use_sql_comments=true
spring.jpa.properties.hibernate.generate_statistics=true

Logging SQL et statistiques
logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type.descriptor.sql.BasicBinder=TRACE
logging.level.org.hibernate.stat=DEBUG
logging.level.org.hibernate.orm.jdbc.bind=TRACE

Hypersistence Utils
logging.level.io.hypersistence.utils=DEBUG

Livrables attendus

Priorités (4h)

Must have :

✅ Associations Order/OrderItem/User complètes avec tests
✅ Résolution problème N+1 sur au moins 2 endpoints
✅ Implémentation héritage produits (1 stratégie au choix)
✅ Hypersistence : détection automatique N+1 activée
✅ Tests d'intégration validant les performances

Nice to have :

Comparaison des 3 stratégies d'héritage
Type JSON pour attributs dynamiques produits
Tsid sur une nouvelle entité (Review, Wishlist…)
Benchmark avant/après optimisations avec query count assertions
Documentation des choix architecturaux

Ressources

Hibernate Performance Best Practices

https://vladmihalcea.com/tutorials/hibernate/

2026/01/28 01:36 9/9 2 - JPA Avancé et Optimisation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Hypersistence Utils GitHub
Documentation officielle Hypersistence
Spring Data JPA Query Methods

Conseils :

Commencer par les associations avant l'optimisation
Toujours mesurer avant d'optimiser (logs SQL)
L'héritage n'est pas toujours la meilleure solution (composition > héritage)
Privilégier @ManyToOne LAZY par défaut

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875525

Last update: 2025/10/08 00:18

https://github.com/vladmihalcea/hypersistence-utils
https://hypersistence.io/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875525

	2 - JPA Avancé et Optimisation
	Objectifs pédagogiques
	Partie 1 : Associations JPA (1h30)
	1.1 Implémentation des associations manquantes
	1.2 Exercice pratique : Orders & OrderItems

	Partie 2 : Problèmes de performance (1h30)
	2.1 Diagnostic du problème N+1
	2.2 Solutions d'optimisation

	Partie 3 : Héritage JPA (1h)
	3.1 Cas d'usage : Typologie de produits
	3.2 Implémentation avec stratégies d'héritage
	3.3 Requêtes polymorphiques

	Partie 4 : Hypersistence Utils - Outils avancés (30min-1h)
	4.1 Introduction à Hypersistence Utils
	Dépendance Maven

	4.2 Détection automatique des problèmes N+1
	Configuration
	Utilisation du QueryStackTraceLogger

	4.3 Types JSON natifs
	Exemple : Attributs dynamiques produit
	Données exemple

	4.4 Optimisation des identifiants avec Tsid
	Comparaison UUID vs Tsid

	4.5 Monitoring des requêtes en temps réel
	DataSourceProxyBeanPostProcessor

	4.6 Exercice intégratif

	Configuration complète
	Livrables attendus
	Priorités (4h)

	Ressources

