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2 - JPA Avancé et Optimisation

Séance 2 (4h)

Contexte : fil rouge e-commerce

Objectifs pédagogiques

Maîtriser les associations bidirectionnelles et leurs pièges
Comprendre et résoudre les problèmes N+1
Utiliser l'héritage JPA à bon escient
Optimiser les requêtes avec fetch strategies et projections

Partie 1 : Associations JPA (1h30)

1.1 Implémentation des associations manquantes

À réaliser :

Compléter Order ↔ OrderItem (bidirectionnel)
Implémenter Order → User (unidirectionnel)
Gérer User ↔ Category (preferences, Many-to-Many)
Ajouter @JsonIgnore / @JsonManagedReference pour éviter les boucles

Points d'attention :

Choix du côté propriétaire (mappedBy)
Cascade types appropriés
Orphan removal
Lazy vs Eager loading

1.2 Exercice pratique : Orders & OrderItems

// Contraintes métier à implémenter
- Un Order doit toujours avoir au moins 1 OrderItem
- Suppression d'un Order → suppression des OrderItems
- totalAmount calculé automatiquement
- Gestion du stock produit lors de la création

Tests attendus :

Création d'une commande avec items
Calcul automatique du total
Mise à jour du stock
Suppression en cascade
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Partie 2 : Problèmes de performance (1h30)

2.1 Diagnostic du problème N+1

Scénario :

GET /users/{id}/orders
// Retourne les commandes avec leurs items et produits

Mission :

Activer les logs SQL (spring.jpa.show-sql=true)1.
Identifier le problème N+12.
Compter le nombre de requêtes générées3.

2.2 Solutions d'optimisation

À implémenter et comparer :

Solution Cas d'usage Avantages Inconvénients
@EntityGraph Requêtes standards Simple Moins flexible
JOIN FETCH Requêtes complexes Contrôle total Code JPQL
@BatchSize Lazy loading Transparent Moins optimal
DTO Projection Lecture seule Performances max Plus de code

Exercices :

Optimiser /users/{id}/orders avec JOIN FETCH1.
Créer une projection pour /products (liste)2.
Comparer les performances avant/après3.

Partie 3 : Héritage JPA (1h)

3.1 Cas d'usage : Typologie de produits

Nouveau besoin métier :

Différencier 3 types de produits :

PhysicalProduct : poids, dimensions, frais de port
DigitalProduct : taille fichier, URL download, format
ServiceProduct : durée, date prestation

Tous partagent : id, name, price, stock, category
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3.2 Implémentation avec stratégies d'héritage

À explorer (au choix ou comparaison) :

// Option 1 : SINGLE_TABLE (par défaut)
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "product_type")

// Option 2 : JOINED
@Inheritance(strategy = InheritanceType.JOINED)

// Option 3 : TABLE_PER_CLASS
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)

Exercice comparatif :

Schéma base de données généré
Requêtes SQL produites
Avantages/inconvénients de chaque stratégie

3.3 Requêtes polymorphiques

// Repository
List<Product> findAll(); // Tous types confondus
List<PhysicalProduct> findPhysicalProducts();

// Nouveaux endpoints
GET /products?type=PHYSICAL
GET /products?type=DIGITAL

Partie 4 : Hypersistence Utils - Outils avancés (30min-1h)

4.1 Introduction à Hypersistence Utils

Hypersistence Utils est une bibliothèque créée par Vlad Mihalcea qui apporte :

Des types personnalisés (JSON, Array, etc.)
Des utilitaires de diagnostic de performance
Des listeners pour optimiser les opérations
Des identifiants optimisés (Tsid)

Dépendance Maven
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<dependency>
    <groupId>io.hypersistence</groupId>
    <artifactId>hypersistence-utils-hibernate-63</artifactId>
    <version>3.7.0</version>
</dependency>

4.2 Détection automatique des problèmes N+1

Objectif : Détecter automatiquement les problèmes de performance sans analyse manuelle des
logs

Configuration

# application.properties - Ajout pour Hypersistence

# Détection des problèmes N+1
logging.level.io.hypersistence.utils=DEBUG

# Limites d'alerte (optionnel)
hypersistence.query.fail.on.pagination.over.collection.fetch=false

Utilisation du QueryStackTraceLogger

// Configuration globale (classe @Configuration)
@Configuration
public class HypersistenceConfiguration {
    @Bean
    public QueryStackTraceLogger queryStackTraceLogger() {
        return new QueryStackTraceLogger();
    }
    @EventListener
    public void onApplicationEvent(ApplicationReadyEvent event) {
        // Active la détection des problèmes N+1
        QueryStackTraceLogger.INSTANCE.setThreshold(10); // Alerte si > 10 requêtes
    }
}

Exercice :

Activer le logger sur l'endpoint /users/{id}/orders
Observer les alertes automatiques
Corriger les problèmes détectés
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4.3 Types JSON natifs

Cas d'usage : Stocker des métadonnées flexibles sur les produits

Exemple : Attributs dynamiques produit

@Entity
@Table(name = "products")
public class Product {
    // ... attributs existants
    @Type(JsonType.class)
    @Column(columnDefinition = "json")
    private Map<String, Object> attributes;
    // Pour PhysicalProduct : {"weight": 2.5, "dimensions": "30x20x10"}
    // Pour DigitalProduct : {"fileSize": "1.2GB", "format": "PDF"}
}

Données exemple

{
  "id": "550e8400-e29b-41d4-a716-446655440020",
  "name": "iPhone 15 Pro",
  "price": 1199.99,
  "stock": 25,
  "categoryId": "550e8400-e29b-41d4-a716-446655440010",
  "attributes": {
    "color": "Titanium Blue",
    "storage": "256GB",
    "warranty": "2 years"
  }
}

Exercice :

Ajouter le champ attributes à Product
Créer un endpoint GET /products/{id}/attributes
Filtrer les produits par attribut : GET /products?attr.color=Blue

4.4 Optimisation des identifiants avec Tsid

Tsid (Time-Sorted Identifiers) :

Alternative performante aux UUID
Triables chronologiquement



Last update: 2025/10/08 00:18 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1759875525

http://slamwiki2.kobject.net/ Printed on 2026/01/28 01:36

Plus compacts (Long au lieu de UUID)
Meilleure performance en base

Comparaison UUID vs Tsid

// Avant (UUID)
@Id
@GeneratedValue(strategy = GenerationType.UUID)
private UUID id;

// Après (Tsid) - Pour nouvelles entités
@Id
@TsidGenerator
private Long id;

Exercice optionnel :

Créer une nouvelle entité Review avec Tsid
Comparer les performances d'insertion (benchmark)

Review

id : Long
rating : Integer
title : String
comment : String
verified : Boolean
helpfulCount : Integer
createdAt : LocalDateTime
updatedAt : LocalDateTime

Product

id : UUID
name : String
price : BigDecimal
stock : Integer

User

id : UUID
username : String
email : String

Contraintes métier :
• rating ∈ [1..5]
• 1 review max par (user, product)
• verified = true si achat confirmé
• helpfulCount >= 0
 
Tsid Generator pour l'id
(performance + tri chronologique)

product
1

0..*
author

1

0..*

4.5 Monitoring des requêtes en temps réel

DataSourceProxyBeanPostProcessor

@Configuration
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public class DataSourceProxyConfiguration {
    @Bean
    public DataSourceProxyBeanPostProcessor dataSourceProxyBeanPostProcessor() {
        return new DataSourceProxyBeanPostProcessor() {
            @Override
            protected DataSourceProxy createDataSourceProxy(DataSource dataSource)
{
                return new DataSourceProxy(dataSource, new QueryCountHolder());
            }
        };
    }
}

Exercice :

Mettre en place le monitoring
Créer un test d'intégration qui vérifie le nombre exact de requêtes
Exemple : assertQueryCount(3) après un appel API

4.6 Exercice intégratif

Mission : Améliorer l'endpoint recommendations

GET /users/{id}/recommendations

Avec Hypersistence :

Détecter automatiquement les problèmes N+1
Limiter à 5 requêtes maximum (assertion en test)
Stocker les préférences utilisateur en JSON
Logger les performances de la recommandation

Structure JSON recommandée :

// User.preferences (JSON)
{
  "priceRange": {"min": 50, "max": 500},
  "brands": ["Apple", "Samsung"],
  "excludeCategories": ["550e8400-..."]
}

Configuration complète
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# application.properties - Configuration complète Séance 2

# H2 Database
spring.datasource.url=jdbc:h2:file:./data/ecommerce
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=

# H2 Console
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

# JPA/Hibernate
spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true
spring.jpa.properties.hibernate.use_sql_comments=true
spring.jpa.properties.hibernate.generate_statistics=true

# Logging SQL et statistiques
logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type.descriptor.sql.BasicBinder=TRACE
logging.level.org.hibernate.stat=DEBUG
logging.level.org.hibernate.orm.jdbc.bind=TRACE

# Hypersistence Utils
logging.level.io.hypersistence.utils=DEBUG

Livrables attendus

Priorités (4h)

Must have :

✅ Associations Order/OrderItem/User complètes avec tests
✅ Résolution problème N+1 sur au moins 2 endpoints
✅ Implémentation héritage produits (1 stratégie au choix)
✅ Hypersistence : détection automatique N+1 activée
✅ Tests d'intégration validant les performances

Nice to have :

Comparaison des 3 stratégies d'héritage
Type JSON pour attributs dynamiques produits
Tsid sur une nouvelle entité (Review, Wishlist…)
Benchmark avant/après optimisations avec query count assertions
Documentation des choix architecturaux

Ressources

Hibernate Performance Best Practices

https://vladmihalcea.com/tutorials/hibernate/
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Hypersistence Utils GitHub
Documentation officielle Hypersistence
Spring Data JPA Query Methods

Conseils :

Commencer par les associations avant l'optimisation
Toujours mesurer avant d'optimiser (logs SQL)
L'héritage n'est pas toujours la meilleure solution (composition > héritage)
Privilégier @ManyToOne LAZY par défaut
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