2026/01/28 17:14 1/16 2 - JPA Avancé et Optimisation

Tu as absolument raison, pardon pour I'erreur ! Voici la correction en syntaxe DokuWiki :

2 - JPA Avanceé et Optimisation

Séance 2 (4h)

Contexte : fil rouge e-commerce

Objectifs pédagogiques

Maitriser les associations bidirectionnelles et leurs piéges
Comprendre et résoudre les problémes N+1

Utiliser I'héritage JPA a bon escient

Optimiser les requétes avec fetch strategies et projections

Partie 1 : Associations JPA (1h30)

1.1 Implémentation des associations manquantes

Points d'attention :

Choix du co6té propriétaire (nappedBy)
Cascade types appropriés

Orphan removal

Lazy vs Eager loading

1.2 Exercice pratique : Orders & Orderltems

// Contraintes métier a implémenter

// - Un Order doit toujours avoir au moins 1 OrderItem
// - Suppression d'un Order - suppression des OrderItems
// - totalAmount calculé automatiquement

// - Gestion du stock produit lors de la création

@Entity

@Table(name = "orders")

class Order(
@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "user id", nullable = false)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

val user: User,

@Enumerated(EnumType.STRING)
@Column(nullable = false)
var status: OrderStatus = OrderStatus.PENDING,

@Column(nullable = false)
var totalAmount: BigDecimal = BigDecimal.ZERO,

@Column(nullable = false)
val createdAt: Instant = Instant.now()

@Id
@GeneratedValue(strategy = GenerationType.UUID)
var id: UUID? = null

@OneToMany (
mappedBy = "order",
cascade = [CascadeType.ALL],
orphanRemoval = true,
fetch = FetchType.LAZY
)
@JsonManagedReference
private val items: MutablelList<OrderItem> = mutableListOf()

val items: List<OrderItem>
get() = items.tolList()

fun addItem(item: OrderItem) {
require(items.isEmpty() || _items.size < 100) {
"Cannot add more than 100 items to an order"
}
_items.add(item)
item.order = this
recalculateTotal()

}

fun removeltem(item: OrderItem) {
_items.remove(item)
item.order = null
recalculateTotal()

}
private fun recalculateTotal() {
totalAmount = items.sumOf { it.unitPrice * it.quantity.toBigDecimal() }
}
init {
require(user.id != null) { "User must be persisted before creating an
order" }
}
}
@Entity
@Table(name = "order items")

class OrderItem(

http://slamwiki2.kobject.net/ Printed on 2026/01/28 17:14

2026/01/28 17:14 3/16

2 - JPA Avancé et Optimisation

}

@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "product id", nullable = false)
val product: Product,

@Column(nullable = false)
val quantity: Int,

@Column(nullable = false, precision = 10, scale = 2)
val unitPrice: BigDecimal

@Id
@GeneratedValue(strategy = GenerationType.UUID)
var id: UUID? = null

@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "order id", nullable = false)
@JsonBackReference

var order: Order? = null

init {
require(quantity > 0) { "Quantity must be positive" }

require(unitPrice > BigDecimal.ZERO) { "Unit price must be positive" }

enum class OrderStatus {

PENDING,
CONFIRMED,
SHIPPED,
DELIVERED,
CANCELLED

Tests attendus :

Création d'une commande avec items
Calcul automatique du total

Mise a jour du stock

Suppression en cascade

@SpringBootTest
@Transactional
class OrderServiceTest {

@Autowired
private lateinit var orderService: OrderService

@Autowired
private lateinit var userRepository: UserRepository

@Autowired
private lateinit var productRepository: ProductRepository

@Test

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/09 16:30

fun

1999.99

}

@Tes
fun

“should create order with items and calculate total () {
// Given
val user = userRepository.save(User("John Doe", "john@example.com"))
val productl = productRepository.save(
Product("iPhone", BigDecimal("999.99"), 10, category)
)
val product2 = productRepository.save(
Product("MacBook", BigDecimal("1999.99"), 5, category)
)

val dto = CreateOrderDto(
userId = user.id!!,
items = listOf(
OrderItemDto(productl.id!!, 2),
OrderItemDto(product2.id!!, 1)

)

// When
val order = orderService.createOrder(dto)

// Then
assertThat(order.items) .hasSize(2)

assertThat(order.totalAmount).isEqualByComparingTo("3999.97") // 2*999.99 +

assertThat(productl.stock).isEqualTo(8) // 10 - 2
assertThat(product2.stock).isEqualTo(4) // 5 - 1

t

“should fail when insufficient stock () {

// Given

val user = userRepository.save(User("Jane", "jane@example.com"))

val product = productRepository.save(
Product("Limited Item", BigDecimal("50.00"), 2, category)
)

val dto = CreateOrderDto(

userld = user.id!!,

items = listOf(OrderItemDto(product.id!!, 5))
)

// When & Then
assertThatThrownBy { orderService.createOrder(dto) }
.isInstanceOf (InsufficientStockException::class.java)

Chargement minimaliste

Pour recréer a moindre colt une relation (sans charger complétement I'instance depuis le repository)

val user

= entityManager.getReference(User::class.java, userId)

http://slamwiki2.kobject.net/

eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

Printed on 2026/01/28 17:14

2026/01/28 17:14 5/16

2 - JPA Avancé et Optimisation

Partie 2 : Problemes de performance (1h30)

2.1 Diagnostic du probleme N+1

// GET /users/{id}/orders
// Retourne les commandes avec leurs items et produits

Mission :

1. Activer les logs SQL (spring.jpa.show-sql=true)
2. Identifier le probleme N+1
3. Compter le nombre de requétes générées

2.2 Solutions d'optimisation

A implémenter et comparer :

Solution Cas d'usage Avantages Inconvénients
@EntityGraph|Requétes standards |Simple Moins flexible
JOIN FETCH |Requétes complexes|Contréle total Code JPQL
@BatchSize |Lazy loading Transparent Moins optimal
DTO Projection |Lecture seule Performances max|Plus de code
Exercices :

1. Optimiser /users/{id}/orders avec JOIN FETCH
2. Créer une projection pour /products (liste)
3. Comparer les performances avant/apres

// [PROBLEME N+1 : Sans optimisation

interface OrderRepository : JpaRepository<Order, UUID> {
fun findByUserId(userId: UUID): List<Order>
// 1 requéte pour les orders
// N requétes pour charger les items de chaque order
// M requétes pour charger les produits de chaque item

}

// 0 SOLUTION 1 : JOIN FETCH
interface OrderRepository : JpaRepository<Order, UUID> {
@Query ("""
SELECT DISTINCT o FROM Order o
JOIN FETCH o.items i
JOIN FETCH i.product

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

WHERE o.user.id = :userld
nn II)
fun findByUserIdWithItems(userId: UUID): List<Order>
}

// [0 SOLUTION 2 : @EntityGraph

interface OrderRepository : JpaRepository<Order, UUID> {
@EntityGraph(attributePaths = ["items", "items.product"])
fun findByUserId(userId: UUID): List<Order>

}

// [0 SOLUTION 3 : DTO Projection
data class OrderSummaryDto (
val id: UUID,
val totalAmount: BigDecimal,
val status: OrderStatus,
val itemCount: Long,
val createdAt: Instant

)

interface OrderRepository : JpaRepository<Order, UUID> {

@Query(nmnn
SELECT new com.ecommerce.order.dto.0rderSummaryDto (
0.id, o.totalAmount, o.status, COUNT(i), o.createdAt

)
FROM Order o

LEFT JOIN o.items i
WHERE o.user.id = :userId
GROUP BY o0.id, o.totalAmount, o.status, o.createdAt

nn II)
fun findOrderSummariesByUserId(userId: UUID): List<OrderSummaryDto>

Partie 3 : Héritage JPA (1h)
3.1 Cas d'usage : Typologie de produits

Nouveau besoin métier :
Différencier 3 types de produits :

¢ PhysicalProduct : poids, dimensions, frais de port
¢ DigitalProduct : taille fichier, URL download, format
e ServiceProduct : durée, date prestation

Tous partagent : id, name, price, stock, category
3.2 Implémentation avec stratégies d'héritage

A explorer (au choix ou comparaison) :

http://slamwiki2.kobject.net/ Printed on 2026/01/28 17:14

2026/01/28 17:14 7/16 2 - JPA Avancé et Optimisation

// Option 1 : SINGLE TABLE (par défaut)
@Entity
@Table(name = "products")
@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@iscriminatorColumn(name = "product type", discriminatorType =
DiscriminatorType.STRING)
abstract class Product(
@Column(nullable = false)
open var name: String,

@Column(nullable = false, precision = 10, scale = 2)
open var price: BigDecimal,

@Column(nullable = false)
open var stock: Int,

@anyToOne(fetch FetchType.LAZY)
@JoinColumn(name "category id", nullable = false)
open var category: Category

@Id
@GeneratedValue(strategy = GenerationType.UUID)
open var id: UUID? = null

}

@Entity
@DiscriminatorValue("PHYSICAL")
class PhysicalProduct(

name: String,

price: BigDecimal,

stock: Int,

category: Category,

@Column(name = "weight kg")
var weight: Double,

@Column(name = "dimensions")
var dimensions: String, // "30x20x10"

@Column(name = "shipping cost", precision = 10, scale = 2)
var shippingCost: BigDecimal
) : Product(name, price, stock, category)

@Entity
@DiscriminatorValue("DIGITAL")
class DigitalProduct(

name: String,

price: BigDecimal,

stock: Int,

category: Category,

@Column(name = "file size mb")
var fileSize: Double,

@Column(name = "download url")
var downloadUrl: String,

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

@Column(name = "file format")
var format: String // PDF, MP4, ZIP...
) : Product(name, price, stock, category)

@Entity
@DiscriminatorValue("SERVICE")
class ServiceProduct (

name: String,

price: BigDecimal,

stock: Int,

category: Category,

@Column(name = "duration hours")
var duration: Int,

@Column(name = "service date")
var serviceDate: LocalDate?
) : Product(name, price, stock, category)

// Option 2 : JOINED (tables séparées)
@Entity
@Table(name = "products")
@Inheritance(strategy = InheritanceType.JOINED)
abstract class Product(
// ... mémes champs

)

@Entity
@Table(name = "physical products")
class PhysicalProduct(
// ... champs spécifiques
) : Product(...)

// Option 3 : TABLE PER CLASS (une table complete par classe concrete)
@Entity
@Inheritance(strategy =
abstract class Product(
// ... mémes champs

InheritanceType.TABLE PER CLASS)

Exercice comparatif :

e Schéma base de données généré
¢ Requétes SQL produites
¢ Avantages/inconvénients de chaque stratégie

3.3 Requétes polymorphiques

// Repository

interface ProductRepository : JpaRepository<Product, UUID> {
// Tous types confondus
override fun findAll(): List<Product>
// Seulement les produits physiques

http://slamwiki2.kobject.net/ Printed on 2026/01/28 17:14

2026/01/28 17:14 9/16 2 - JPA Avancé et Optimisation

@Query ("SELECT p FROM PhysicalProduct p")

fun findPhysicalProducts(): List<PhysicalProduct>

// Filtrage par type

@Query ("SELECT p FROM Product p WHERE TYPE(p) = :type")
fun findByType(type: Class<out Product>): List<Product>

}

// Controller

@RestController

@RequestMapping("/products")

class ProductController(private val repository: ProductRepository) {

@GetMapping
fun getProducts(@RequestParam(required = false) type: String?): List<Product> {
return when (type?.uppercase()) {
"PHYSICAL" -> repository.findByType(PhysicalProduct::class.java)
"DIGITAL" -> repository.findByType(DigitalProduct::class.java)
"SERVICE" -> repository.findByType(ServiceProduct::class.java)
else -> repository.findAll()

Partie 4 : Hypersistence Utils - Outils avancés (30min-1h)

4.1 Introduction a Hypersistence Utils

Dépendance Maven

<dependency>
<groupld>io.hypersistence</groupId>
<artifactId>hypersistence-utils-hibernate-63</artifactId>
<version>3.7.0</version>

</dependency>

4.2 Détection automatique des problemes N+1

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

Configuration

@Configuration
class HypersistenceConfiguration {
@Bean
fun queryStackTracelLogger() = QueryStackTracelLogger()
@EventListener
fun onApplicationReady(event: ApplicationReadyEvent) {
// Active la détection des problémes N+1
QueryStackTracelLogger.INSTANCE.threshold = 10 // Alerte si > 10 requétes

Exercice :

e Activer le logger sur I'endpoint /users/{id}/orders
e Observer les alertes automatiques
e Corriger les problemes détectés

4.3 Types JSON natifs

Exemple : Attributs dynamiques produit

@Entity

@Table(name = "products")

class Product(
@Column(nullable = false)
var name: String,

@Column(nullable = false, precision = 10, scale = 2)
var price: BigDecimal,

@Column(nullable
var stock: Int,

false)

@ManyToOne(fetch FetchType.LAZY)
@JoinColumn(name = "category id")
var category: Category,

// [0 Stockage JSON pour attributs dynamiques

@Type(JsonType: :class)

@Column(columnDefinition = "json")

var attributes: Map<String, Any> = emptyMap()
) {

http://slamwiki2.kobject.net/ Printed on 2026/01/28 17:14

2026/01/28 17:14 11/16

2 - JPA Avancé et Optimisation

@Id
@GeneratedValue(strategy = GenerationType.UUID)
var id: UUID? = null

}

// Utilisation
val product = Product(

name = "iPhone 15 Pro",
price = BigDecimal("1199.99"),
stock = 25,

category = electronicsCategory,
attributes = mapOf(
"color" to "Titanium Blue",
“storage" to "256GB",
"warranty" to "2 years",
"features" to listOf("5G", "Face ID", "Al7 Pro")

Données exemple

{
"id": "550e8400-e29b-41d4-a716-446655440020",
"name": "iPhone 15 Pro",
"price": 1199.99,
"stock": 25,

"categoryId": "550e8400-e29b-41d4-a716-446655440010",
"attributes": {

"color": "Titanium Blue",
“storage": "256GB",
"warranty": "2 years",
"features": ["5G", "Face ID", "Al7 Pro"]
}
}
Exercice :

e Ajouter le champ attributes a Product
e Créer un endpoint GET /products/{id}/attributes
e Filtrer les produits par attribut : GET /products?attr.color=Blue

4.4 Optimisation des identifiants avec Tsid

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/09 16:30

eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

Comparaison UUID vs Tsid

// Avant
@Entity
class Review(
@Id
@GeneratedValue(strategy
var id: UUID? null,
// ...

(UUID)

)

= GenerationType.UUID)

// Apres (Tsid) - Pour nouvelles entités

@Entity
@Table(name = "reviews")
class Review(
@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "product id", nullable = false)
val product: Product,
@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "user id", nullable = false)
val author: User,
@Column(nullable = false)
val rating: Int, // 1-5
@Column(nullable = false, length = 200)
val title: String,
@Column(nullable = false, length = 2000)
val comment: String,
@Column(nullable = false)
var verified: Boolean = false,
@Column(nullable = false)
var helpfulCount: Int = 0,
@Column(nullable = false)
val createdAt: Instant = Instant.now(),
@Column(nullable = false)
var updatedAt: Instant = Instant.now()
) |
@Id
@TsidGenerator
var id: Long? = null
init {
require(rating in 1..5) { "Rating must be between 1 and 5" }
require(title.isNotBlank()) { "Title cannot be blank" }
require(comment.isNotBlank()) { "Comment cannot be blank" }
require(helpfulCount >= 0) { "Helpful count cannot be negative" }

}

http://slamwiki2.kobject.net/

Printed on 2026/01/28 17:14

2026/01/28 17:14 13/16 2 - JPA Avancé et Optimisation

}

Exercice optionnel :

e Créer une nouvelle entité Review avec Tsid
e Comparer les performances d'insertion (benchmark)

@ Product @ User

oid : UUID

o name : String

o price : BigDecimal
o stock : Integer

oid : UUID
O username : String
o email : String

1
product author
0.. 0..*
@ Review
id - Lon Contraintes métier : &

. t ? ¢ * rating € [1..5]
by rating - Integer « 1 review max par (user, product)
o title : String |« verified = true si achat confirmé
o comment : String « helpfulCount >= 0
o verified : Boolean
o helpfulCount : Integer Tsid Generator pour l'id
o createdAt : LocalDateTime (performance + tri chronologique)
o updatedAt : LocalDateTime

4.5 Monitoring des requétes en temps réel

DataSourceProxyBeanPostProcessor

@Configuration
class DataSourceProxyConfiguration {
@Bean
fun dataSourceProxyBeanPostProcessor() = object
DataSourceProxyBeanPostProcessor() {
override fun createDataSourceProxy(dataSource: DataSource): DataSourceProxy

{
return DataSourceProxy(dataSource, QueryCountHolder())
}
}
}
Exercice :

¢ Mettre en place le monitoring
e Créer un test d'intégration qui vérifie le nombre exact de requétes
e Exemple : assertQueryCount(3) aprés un appel API

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

@SpringBootTest
@AutoConfigureMockMvc
@ActiveProfiles("test")
@Transactional

class OrderPerformanceTest {

@Autowired
private lateinit var mockMvc: MockMvc

@Test

fun “should not trigger N+1 queries when fetching user orders () {
// Given

val userId = createUserWithOrders()

// When
SQLStatementCountValidator.reset()

mockMvc.perform(get("/users/$userId/orders"))
.andExpect (status().1is0k)

// Then - Vérifier le nombre de requétes SQL
assertSelectCount(2) // 1 pour User + 1 pour Orders avec items (JOIN FETCH)

4.6 Exercice intégratif

// GET /users/{id}/recommendations

Avec Hypersistence :

Détecter automatiquement les problémes N+1
Limiter a 5 requétes maximum (assertion en test)
Stocker les préférences utilisateur en JSON

Logger les performances de la recommandation

Structure JSON recommandée :

@Entity
@Table(name = "users")
class User(
@Column(nullable = false)

var name: String,

@Column(nullable
var email: String,

false, unique = true)

// [Préférences stockées en JSON
@Type(JsonType: :class)

http://slamwiki2.kobject.net/ Printed on 2026/01/28 17:14

2026/01/28 17:14 15/16 2 - JPA Avancé et Optimisation

@Column(columnDefinition = "json")

var preferences: UserPreferences = UserPreferences()
) {

@Id

@GeneratedValue(strategy = GenerationType.UUID)
var id: UUID? = null

}

data class UserPreferences(
val priceRange: PriceRange = PriceRange(),
val brands: List<String> = emptyList(),
val excludeCategories: List<UUID> = emptylList()
)

data class PriceRange(
val min: BigDecimal
val max: BigDecimal

BigDecimal.ZERO,
BigDecimal("10000")

Configuration complete

application.properties - Configuration compléete Séance 2

H2 Database
spring.datasource.url=jdbc:h2:file:./data/ecommerce
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=

H2 Console
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

JPA/Hibernate

spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format sql=true
spring.jpa.properties.hibernate.use sql comments=true
spring.jpa.properties.hibernate.generate statistics=true

Logging SQL et statistiques
logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type.descriptor.sql.BasicBinder=TRACE
logging.level.org.hibernate.stat=DEBUG
logging.level.org.hibernate.orm. jdbc.bind=TRACE

Hypersistence Utils
logging.level.io.hypersistence.utils=DEBUG

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

Livrables attendus

Ressources

Hibernate Performance Best Practices
¢ Hypersistence Utils GitHub
Documentation officielle Hypersistence
Spring Data JPA Query Methods

Kotlin JPA Plugin

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

Last update: 2025/11/09 16:30

http://slamwiki2.kobject.net/ Printed on 2026/01/28 17:14

https://vladmihalcea.com/tutorials/hibernate/
https://github.com/vladmihalcea/hypersistence-utils
https://hypersistence.io/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#jpa.query-methods
https://kotlinlang.org/docs/jpa.html
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

	2 - JPA Avancé et Optimisation
	Objectifs pédagogiques
	Partie 1 : Associations JPA (1h30)
	1.1 Implémentation des associations manquantes
	1.2 Exercice pratique : Orders & OrderItems
	Chargement minimaliste

	Partie 2 : Problèmes de performance (1h30)
	2.1 Diagnostic du problème N+1
	2.2 Solutions d'optimisation

	Partie 3 : Héritage JPA (1h)
	3.1 Cas d'usage : Typologie de produits
	3.2 Implémentation avec stratégies d'héritage
	3.3 Requêtes polymorphiques

	Partie 4 : Hypersistence Utils - Outils avancés (30min-1h)
	4.1 Introduction à Hypersistence Utils
	Dépendance Maven

	4.2 Détection automatique des problèmes N+1
	Configuration

	4.3 Types JSON natifs
	Exemple : Attributs dynamiques produit
	Données exemple

	4.4 Optimisation des identifiants avec Tsid
	Comparaison UUID vs Tsid

	4.5 Monitoring des requêtes en temps réel
	DataSourceProxyBeanPostProcessor

	4.6 Exercice intégratif

	Configuration complète
	Livrables attendus
	Priorités (4h)

	Ressources

