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Tu as absolument raison, pardon pour I'erreur ! Voici la correction en syntaxe DokuWiki :

2 - JPA Avanceé et Optimisation

Séance 2 (4h)

Contexte : fil rouge e-commerce

Objectifs pédagogiques

Maitriser les associations bidirectionnelles et leurs piéges
Comprendre et résoudre les problémes N+1

Utiliser I'héritage JPA a bon escient

Optimiser les requétes avec fetch strategies et projections

Partie 1 : Associations JPA (1h30)

1.1 Implémentation des associations manquantes

Points d'attention :

Choix du co6té propriétaire (nappedBy)
Cascade types appropriés

Orphan removal

Lazy vs Eager loading

1.2 Exercice pratique : Orders & Orderltems

// Contraintes métier a implémenter

// - Un Order doit toujours avoir au moins 1 OrderItem
// - Suppression d'un Order - suppression des OrderItems
// - totalAmount calculé automatiquement

// - Gestion du stock produit lors de la création

@Entity

@Table(name = "orders")

class Order(
@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "user id", nullable = false)
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val user: User,

@Enumerated(EnumType.STRING)
@Column(nullable = false)
var status: OrderStatus = OrderStatus.PENDING,

@Column(nullable = false)
var totalAmount: BigDecimal = BigDecimal.ZERO,

@Column(nullable = false)
val createdAt: Instant = Instant.now()

@Id
@GeneratedValue(strategy = GenerationType.UUID)
var id: UUID? = null

@OneToMany (
mappedBy = "order",
cascade = [CascadeType.ALL],
orphanRemoval = true,
fetch = FetchType.LAZY
)
@JsonManagedReference
private val items: MutablelList<OrderItem> = mutableListOf()

val items: List<OrderItem>
get() = items.tolList()

fun addItem(item: OrderItem) {
require( items.isEmpty() || _items.size < 100) {
"Cannot add more than 100 items to an order"
}
_items.add(item)
item.order = this
recalculateTotal()

}

fun removeltem(item: OrderItem) {
_items.remove(item)
item.order = null
recalculateTotal()

}
private fun recalculateTotal() {
totalAmount = items.sumOf { it.unitPrice * it.quantity.toBigDecimal() }
}
init {
require(user.id != null) { "User must be persisted before creating an
order" }
}
}
@Entity
@Table(name = "order items")

class OrderItem(
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}

@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "product id", nullable = false)
val product: Product,

@Column(nullable = false)
val quantity: Int,

@Column(nullable = false, precision = 10, scale = 2)
val unitPrice: BigDecimal

@Id
@GeneratedValue(strategy = GenerationType.UUID)
var id: UUID? = null

@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "order id", nullable = false)
@JsonBackReference

var order: Order? = null

init {
require(quantity > 0) { "Quantity must be positive" }

require(unitPrice > BigDecimal.ZERO) { "Unit price must be positive" }

enum class OrderStatus {

PENDING,
CONFIRMED,
SHIPPED,
DELIVERED,
CANCELLED

Tests attendus :

Création d'une commande avec items
Calcul automatique du total

Mise a jour du stock

Suppression en cascade

@SpringBootTest
@Transactional
class OrderServiceTest {

@Autowired
private lateinit var orderService: OrderService

@Autowired
private lateinit var userRepository: UserRepository

@Autowired
private lateinit var productRepository: ProductRepository

@Test
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fun

1999.99

}

@Tes
fun

“should create order with items and calculate total () {
// Given
val user = userRepository.save(User("John Doe", "john@example.com"))
val productl = productRepository.save(
Product("iPhone", BigDecimal("999.99"), 10, category)
)
val product2 = productRepository.save(
Product("MacBook", BigDecimal("1999.99"), 5, category)
)

val dto = CreateOrderDto(
userId = user.id!!,
items = listOf(
OrderItemDto(productl.id!!, 2),
OrderItemDto(product2.id!!, 1)

)

// When
val order = orderService.createOrder(dto)

// Then
assertThat(order.items) .hasSize(2)

assertThat(order.totalAmount).isEqualByComparingTo("3999.97") // 2*999.99 +

assertThat(productl.stock).isEqualTo(8) // 10 - 2
assertThat(product2.stock).isEqualTo(4) // 5 - 1

t

“should fail when insufficient stock () {

// Given

val user = userRepository.save(User("Jane", "jane@example.com"))

val product = productRepository.save(
Product("Limited Item", BigDecimal("50.00"), 2, category)
)

val dto = CreateOrderDto(

userld = user.id!!,

items = listOf(OrderItemDto(product.id!!, 5))
)

// When & Then
assertThatThrownBy { orderService.createOrder(dto) }
.isInstanceOf (InsufficientStockException::class.java)

Chargement minimaliste

Pour recréer a moindre colt une relation (sans charger complétement I'instance depuis le repository)

val user

= entityManager.getReference(User::class.java, userId)
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Partie 2 : Problemes de performance (1h30)

2.1 Diagnostic du probleme N+1

// GET /users/{id}/orders
// Retourne les commandes avec leurs items et produits

Mission :

1. Activer les logs SQL (spring.jpa.show-sql=true)
2. Identifier le probleme N+1
3. Compter le nombre de requétes générées

2.2 Solutions d'optimisation

A implémenter et comparer :

Solution Cas d'usage Avantages Inconvénients
@EntityGraph|Requétes standards |Simple Moins flexible
JOIN FETCH |Requétes complexes|Contréle total Code JPQL
@BatchSize |Lazy loading Transparent Moins optimal
DTO Projection |Lecture seule Performances max|Plus de code
Exercices :

1. Optimiser /users/{id}/orders avec JOIN FETCH
2. Créer une projection pour /products (liste)
3. Comparer les performances avant/apres

// [ PROBLEME N+1 : Sans optimisation

interface OrderRepository : JpaRepository<Order, UUID> {
fun findByUserId(userId: UUID): List<Order>
// 1 requéte pour les orders
// N requétes pour charger les items de chaque order
// M requétes pour charger les produits de chaque item

}

// 0 SOLUTION 1 : JOIN FETCH
interface OrderRepository : JpaRepository<Order, UUID> {
@Query ("""
SELECT DISTINCT o FROM Order o
JOIN FETCH o.items i
JOIN FETCH i.product
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WHERE o.user.id = :userld
nn II)
fun findByUserIdWithItems(userId: UUID): List<Order>
}

// [0 SOLUTION 2 : @EntityGraph

interface OrderRepository : JpaRepository<Order, UUID> {
@EntityGraph(attributePaths = ["items", "items.product"])
fun findByUserId(userId: UUID): List<Order>

}

// [0 SOLUTION 3 : DTO Projection
data class OrderSummaryDto (
val id: UUID,
val totalAmount: BigDecimal,
val status: OrderStatus,
val itemCount: Long,
val createdAt: Instant

)

interface OrderRepository : JpaRepository<Order, UUID> {

@Query( nmnn
SELECT new com.ecommerce.order.dto.0rderSummaryDto (
0.id, o.totalAmount, o.status, COUNT(i), o.createdAt

)
FROM Order o

LEFT JOIN o.items i
WHERE o.user.id = :userId
GROUP BY o0.id, o.totalAmount, o.status, o.createdAt

nn II)
fun findOrderSummariesByUserId(userId: UUID): List<OrderSummaryDto>

Partie 3 : Héritage JPA (1h)
3.1 Cas d'usage : Typologie de produits

Nouveau besoin métier :
Différencier 3 types de produits :

¢ PhysicalProduct : poids, dimensions, frais de port
¢ DigitalProduct : taille fichier, URL download, format
e ServiceProduct : durée, date prestation

Tous partagent : id, name, price, stock, category
3.2 Implémentation avec stratégies d'héritage

A explorer (au choix ou comparaison) :
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// Option 1 : SINGLE TABLE (par défaut)
@Entity
@Table(name = "products")
@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@iscriminatorColumn(name = "product type", discriminatorType =
DiscriminatorType.STRING)
abstract class Product(
@Column(nullable = false)
open var name: String,

@Column(nullable = false, precision = 10, scale = 2)
open var price: BigDecimal,

@Column(nullable = false)
open var stock: Int,

@anyToOne(fetch FetchType.LAZY)
@JoinColumn(name "category id", nullable = false)
open var category: Category

@Id
@GeneratedValue(strategy = GenerationType.UUID)
open var id: UUID? = null

}

@Entity
@DiscriminatorValue("PHYSICAL")
class PhysicalProduct(

name: String,

price: BigDecimal,

stock: Int,

category: Category,

@Column(name = "weight kg")
var weight: Double,

@Column(name = "dimensions")
var dimensions: String, // "30x20x10"

@Column(name = "shipping cost", precision = 10, scale = 2)
var shippingCost: BigDecimal
) : Product(name, price, stock, category)

@Entity
@DiscriminatorValue("DIGITAL")
class DigitalProduct(

name: String,

price: BigDecimal,

stock: Int,

category: Category,

@Column(name = "file size mb")
var fileSize: Double,

@Column(name = "download url")
var downloadUrl: String,
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@Column(name = "file format")
var format: String // PDF, MP4, ZIP...
) : Product(name, price, stock, category)

@Entity
@DiscriminatorValue("SERVICE")
class ServiceProduct (

name: String,

price: BigDecimal,

stock: Int,

category: Category,

@Column(name = "duration hours")
var duration: Int,

@Column(name = "service date")
var serviceDate: LocalDate?
) : Product(name, price, stock, category)

// Option 2 : JOINED (tables séparées)
@Entity
@Table(name = "products")
@Inheritance(strategy = InheritanceType.JOINED)
abstract class Product(
// ... mémes champs

)

@Entity
@Table(name = "physical products")
class PhysicalProduct(
// ... champs spécifiques
) : Product(...)

// Option 3 : TABLE PER CLASS (une table complete par classe concrete)
@Entity
@Inheritance(strategy =
abstract class Product(
// ... mémes champs

InheritanceType.TABLE PER CLASS)

Exercice comparatif :

e Schéma base de données généré
¢ Requétes SQL produites
¢ Avantages/inconvénients de chaque stratégie

3.3 Requétes polymorphiques

// Repository

interface ProductRepository : JpaRepository<Product, UUID> {
// Tous types confondus
override fun findAll(): List<Product>
// Seulement les produits physiques
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@Query ("SELECT p FROM PhysicalProduct p")

fun findPhysicalProducts(): List<PhysicalProduct>

// Filtrage par type

@Query ("SELECT p FROM Product p WHERE TYPE(p) = :type")
fun findByType(type: Class<out Product>): List<Product>

}

// Controller

@RestController

@RequestMapping("/products")

class ProductController(private val repository: ProductRepository) {

@GetMapping
fun getProducts(@RequestParam(required = false) type: String?): List<Product> {
return when (type?.uppercase()) {
"PHYSICAL" -> repository.findByType(PhysicalProduct::class.java)
"DIGITAL" -> repository.findByType(DigitalProduct::class.java)
"SERVICE" -> repository.findByType(ServiceProduct::class.java)
else -> repository.findAll()

Partie 4 : Hypersistence Utils - Outils avancés (30min-1h)

4.1 Introduction a Hypersistence Utils

Dépendance Maven

<dependency>
<groupld>io.hypersistence</groupId>
<artifactId>hypersistence-utils-hibernate-63</artifactId>
<version>3.7.0</version>

</dependency>

4.2 Détection automatique des problemes N+1

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2025/11/09 16:30 eadl:bloc3:dev_av:td2 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td2?rev=1762702206

Configuration

@Configuration
class HypersistenceConfiguration {
@Bean
fun queryStackTracelLogger() = QueryStackTracelLogger()
@EventListener
fun onApplicationReady(event: ApplicationReadyEvent) {
// Active la détection des problémes N+1
QueryStackTracelLogger.INSTANCE.threshold = 10 // Alerte si > 10 requétes

Exercice :

e Activer le logger sur I'endpoint /users/{id}/orders
e Observer les alertes automatiques
e Corriger les problemes détectés

4.3 Types JSON natifs

Exemple : Attributs dynamiques produit

@Entity

@Table(name = "products")

class Product(
@Column(nullable = false)
var name: String,

@Column(nullable = false, precision = 10, scale = 2)
var price: BigDecimal,

@Column(nullable
var stock: Int,

false)

@ManyToOne(fetch FetchType.LAZY)
@JoinColumn(name = "category id")
var category: Category,

// [0 Stockage JSON pour attributs dynamiques

@Type(JsonType: :class)

@Column(columnDefinition = "json")

var attributes: Map<String, Any> = emptyMap()
) {
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@Id
@GeneratedValue(strategy = GenerationType.UUID)
var id: UUID? = null

}

// Utilisation
val product = Product(

name = "iPhone 15 Pro",
price = BigDecimal("1199.99"),
stock = 25,

category = electronicsCategory,
attributes = mapOf(
"color" to "Titanium Blue",
“storage" to "256GB",
"warranty" to "2 years",
"features" to listOf("5G", "Face ID", "Al7 Pro")

Données exemple

{
"id": "550e8400-e29b-41d4-a716-446655440020",
"name": "iPhone 15 Pro",
"price": 1199.99,
"stock": 25,

"categoryId": "550e8400-e29b-41d4-a716-446655440010",
"attributes": {

"color": "Titanium Blue",
“storage": "256GB",
"warranty": "2 years",
"features": ["5G", "Face ID", "Al7 Pro"]
}
}
Exercice :

e Ajouter le champ attributes a Product
e Créer un endpoint GET /products/{id}/attributes
e Filtrer les produits par attribut : GET /products?attr.color=Blue

4.4 Optimisation des identifiants avec Tsid
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Comparaison UUID vs Tsid

// Avant
@Entity
class Review(
@Id
@GeneratedValue(strategy
var id: UUID? null,
// ...

(UUID)

)

= GenerationType.UUID)

// Apres (Tsid) - Pour nouvelles entités

@Entity
@Table(name = "reviews")
class Review(
@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "product id", nullable = false)
val product: Product,
@ManyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "user id", nullable = false)
val author: User,
@Column(nullable = false)
val rating: Int, // 1-5
@Column(nullable = false, length = 200)
val title: String,
@Column(nullable = false, length = 2000)
val comment: String,
@Column(nullable = false)
var verified: Boolean = false,
@Column(nullable = false)
var helpfulCount: Int = 0,
@Column(nullable = false)
val createdAt: Instant = Instant.now(),
@Column(nullable = false)
var updatedAt: Instant = Instant.now()
) |
@Id
@TsidGenerator
var id: Long? = null
init {
require(rating in 1..5) { "Rating must be between 1 and 5" }
require(title.isNotBlank()) { "Title cannot be blank" }
require(comment.isNotBlank()) { "Comment cannot be blank" }
require(helpfulCount >= 0) { "Helpful count cannot be negative" }

}
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}

Exercice optionnel :

e Créer une nouvelle entité Review avec Tsid
e Comparer les performances d'insertion (benchmark)

@ Product @ User

oid : UUID

o name : String

o price : BigDecimal
o stock : Integer

oid : UUID
O username : String
o email : String

1
product author
0.. 0..*
@ Review
id - Lon Contraintes métier : &

. t ? ¢ * rating € [1..5]
by rating - Integer « 1 review max par (user, product)
o title : String |« verified = true si achat confirmé
o comment : String « helpfulCount >= 0
o verified : Boolean
o helpfulCount : Integer Tsid Generator pour l'id
o createdAt : LocalDateTime (performance + tri chronologique)
o updatedAt : LocalDateTime

4.5 Monitoring des requétes en temps réel

DataSourceProxyBeanPostProcessor

@Configuration
class DataSourceProxyConfiguration {
@Bean
fun dataSourceProxyBeanPostProcessor() = object
DataSourceProxyBeanPostProcessor() {
override fun createDataSourceProxy(dataSource: DataSource): DataSourceProxy

{
return DataSourceProxy(dataSource, QueryCountHolder())
}
}
}
Exercice :

¢ Mettre en place le monitoring
e Créer un test d'intégration qui vérifie le nombre exact de requétes
e Exemple : assertQueryCount(3) aprés un appel API
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@SpringBootTest
@AutoConfigureMockMvc
@ActiveProfiles("test")
@Transactional

class OrderPerformanceTest {

@Autowired
private lateinit var mockMvc: MockMvc

@Test

fun “should not trigger N+1 queries when fetching user orders () {
// Given

val userId = createUserWithOrders()

// When
SQLStatementCountValidator.reset()

mockMvc.perform(get("/users/$userId/orders"))
.andExpect (status().1is0k)

// Then - Vérifier le nombre de requétes SQL
assertSelectCount(2) // 1 pour User + 1 pour Orders avec items (JOIN FETCH)

4.6 Exercice intégratif

// GET /users/{id}/recommendations

Avec Hypersistence :

Détecter automatiquement les problémes N+1
Limiter a 5 requétes maximum (assertion en test)
Stocker les préférences utilisateur en JSON

Logger les performances de la recommandation

Structure JSON recommandée :

@Entity
@Table(name = "users")
class User(
@Column(nullable = false)

var name: String,

@Column(nullable
var email: String,

false, unique = true)

// [ Préférences stockées en JSON
@Type(JsonType: :class)
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@Column(columnDefinition = "json")

var preferences: UserPreferences = UserPreferences()
) {

@Id

@GeneratedValue(strategy = GenerationType.UUID)
var id: UUID? = null

}

data class UserPreferences(
val priceRange: PriceRange = PriceRange(),
val brands: List<String> = emptyList(),
val excludeCategories: List<UUID> = emptylList()
)

data class PriceRange(
val min: BigDecimal
val max: BigDecimal

BigDecimal.ZERO,
BigDecimal("10000")

Configuration complete

# application.properties - Configuration compléete Séance 2

# H2 Database
spring.datasource.url=jdbc:h2:file:./data/ecommerce
spring.datasource.driverClassName=org.h2.Driver
spring.datasource.username=sa
spring.datasource.password=

# H2 Console
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

# JPA/Hibernate

spring.jpa.hibernate.ddl-auto=update
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format sql=true
spring.jpa.properties.hibernate.use sql comments=true
spring.jpa.properties.hibernate.generate statistics=true

# Logging SQL et statistiques
logging.level.org.hibernate.SQL=DEBUG
logging.level.org.hibernate.type.descriptor.sql.BasicBinder=TRACE
logging.level.org.hibernate.stat=DEBUG
logging.level.org.hibernate.orm. jdbc.bind=TRACE

# Hypersistence Utils
logging.level.io.hypersistence.utils=DEBUG
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Livrables attendus

Ressources

Hibernate Performance Best Practices
¢ Hypersistence Utils GitHub
Documentation officielle Hypersistence
Spring Data JPA Query Methods

Kotlin JPA Plugin
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