
2026/02/17 01:15 1/10 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Séance 3 - Tests et CI/CD (4h)

Objectifs pédagogiques

Comprendre la différence entre tests unitaires et tests d'intégration
Écrire des tests simples et efficaces avec les bonnes pratiques
Gérer les profils Spring (dev/test/prod)
Mettre en place une pipeline CI complète avec GitHub Actions
Mesurer la couverture de code

Partie 0 : Point de départ (15min)

Point avancement TD2 * Qui a terminé les associations Order/OrderItem/User ? * Qui a
résolu des problèmes N+1 ? * Décision : Ceux qui ont fini peuvent commencer les tests,
les autres finalisent le TD2 </WRAP> ===== Partie 1 : Configuration multi-
environnements (30min) ===== ==== 1.1 Stratégie de profils Spring ====

Objectif : Séparer les configurations selon l'environnement (dev, test, prod)

=== Structure des fichiers === <sxh;gutter:false> src/main/resources/ ├──
application.properties # Configuration commune ├── application-dev.properties # Développement
local ├── application-test.properties # Tests automatisés └── application-prod.properties #
Production </sxh> === application.properties (commun) === <sxh properties;gutter:false> #
Configuration commune à tous les profils spring.application.name=ecommerce-api
server.port=8080 # JPA commun spring.jpa.open-in-view=false
spring.jpa.properties.hibernate.jdbc.time_zone=UTC # Validation
spring.jackson.deserialization.fail-on-unknown-properties=true </sxh> === application-
dev.properties === <sxh properties;gutter:false> # Base H2 fichier pour le dev
spring.datasource.url=jdbc:h2:file:./data/ecommerce-dev spring.datasource.username=sa
spring.datasource.password= # Console H2 activée spring.h2.console.enabled=true
spring.h2.console.path=/h2-console # DDL auto pour en dev spring.jpa.hibernate.ddl-
auto=update # Logs verbeux spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true logging.level.com.ecommerce=DEBUG
logging.level.io.hypersistence.utils=DEBUG </sxh> === application-test.properties === <sxh
properties;gutter:false> # Base H2 en mémoire pour les tests
spring.datasource.url=jdbc:h2:mem:testdb;MODE=PostgreSQL;DB_CLOSE_DELAY=-1
spring.datasource.username=sa spring.datasource.password= # Recréation du schéma à chaque
test spring.jpa.hibernate.ddl-auto=create-drop # Logs minimaux (sauf erreurs) spring.jpa.show-
sql=false logging.level.com.ecommerce=INFO logging.level.org.hibernate=WARN # Performance
tests spring.jpa.properties.hibernate.generate_statistics=true # Désactivation fonctionnalités non
nécessaires en test spring.h2.console.enabled=false </sxh> === application-prod.properties
=== <sxh properties;gutter:false> # Base PostgreSQL (exemple)
spring.datasource.url=${DATABASE_URL} spring.datasource.username=${DB_USERNAME}
spring.datasource.password=${DB_PASSWORD} # JAMAIS de DDL auto en production
spring.jpa.hibernate.ddl-auto=validate # Logs minimaux spring.jpa.show-sql=false
logging.level.com.ecommerce=INFO # Sécurité spring.h2.console.enabled=false </sxh> ====
1.2 Activation des profils ==== <sxh bash;gutter:false> # Dans IntelliJ : Run Configuration >
Active profiles: dev # Ou via variable d'environnement export SPRING_PROFILES_ACTIVE=dev #

Last update: 2025/10/28 17:06 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667564

http://slamwiki2.kobject.net/ Printed on 2026/02/17 01:15

Via ligne de commande mvn spring-boot:run -Dspring-boot.run.profiles=dev </sxh>

Exercice 1 (15min) :

Créer les 4 fichiers de configuration1.
Tester le lancement avec le profil dev2.
Vérifier que la console H2 est accessible sur /h2-console3.
Relancer avec le profil test et constater les différences de logs4.

===== Partie 2 : Tests Unitaires (1h15) =====

Principe clé : Un test unitaire teste UNE classe isolée, sans base de données, très
rapidement

==== 2.1 Dépendances nécessaires (pom.xml) ==== <sxh xml> <dependencies> <!– Spring
Boot Test (inclut JUnit 5, Mockito, AssertJ) –> <dependency>
<groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope> </dependency> </dependencies> </sxh> ==== 2.2 Premier test simple :
ProductService ==== <sxh java> package com.ecommerce.service; import
com.ecommerce.domain.Product; import com.ecommerce.domain.Category; import
com.ecommerce.repository.ProductRepository; import
com.ecommerce.exception.ProductNotFoundException; import
com.ecommerce.exception.InsufficientStockException; import org.junit.jupiter.api.Test; import
org.junit.jupiter.api.DisplayName; import org.junit.jupiter.api.extension.ExtendWith; import
org.mockito.InjectMocks; import org.mockito.Mock; import
org.mockito.junit.jupiter.MockitoExtension; import java.math.BigDecimal; import java.util.Optional;
import java.util.UUID; import static org.assertj.core.api.Assertions.*; import static
org.mockito.Mockito.*; @ExtendWith(MockitoExtension.class) @DisplayName(“ProductService -
Unit Tests”) class ProductServiceTest { @Mock private ProductRepository productRepository;
@InjectMocks private ProductService productService; @Test @DisplayName(“Should return
product when it exists”) void getProduct_WhenExists_ShouldReturnProduct() { Given (Arrange)
UUID productId = UUID.randomUUID(); Category category = new Category(“Electronics”,
“Devices”); Product expectedProduct = Product.builder() .id(productId) .name(“iPhone”)
.price(new BigDecimal(“999.99”)) .stock(10) .category(category) .build();
when(productRepository.findById(productId)) .thenReturn(Optional.of(expectedProduct)); When
(Act) Product result = productService.getProduct(productId); Then (Assert)
assertThat(result).isNotNull(); assertThat(result.getName()).isEqualTo(“iPhone”);
assertThat(result.getPrice()).isEqualByComparingTo(“999.99”);
assertThat(result.getStock()).isEqualTo(10); verify(productRepository,
times(1)).findById(productId); verifyNoMoreInteractions(productRepository); } @Test
@DisplayName(“Should throw exception when product not found”) void
getProduct_WhenNotExists_ShouldThrowException() { Given UUID productId =
UUID.randomUUID(); when(productRepository.findById(productId)) .thenReturn(Optional.empty());
When & Then assertThatThrownBy1) .isInstanceOf(ProductNotFoundException.class)
.hasMessageContaining(productId.toString()); verify(productRepository).findById(productId); }
@Test @DisplayName(“Should decrease stock when updating with negative quantity”) void
updateStock_WithNegativeQuantity_ShouldDecreaseStock() { Given UUID productId =
UUID.randomUUID(); Product product = Product.builder() .id(productId) .name(“Test Product”)
.price(BigDecimal.TEN) .stock(10) .build(); when(productRepository.findById(productId))
.thenReturn(Optional.of(product)); when(productRepository.save(any(Product.class)))
.thenReturn(product); When productService.updateStock(productId, -3); Then

2026/02/17 01:15 3/10 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

assertThat(product.getStock()).isEqualTo(7); verify(productRepository).save(product); } @Test
@DisplayName(“Should throw exception when insufficient stock”) void
updateStock_WithInsufficientStock_ShouldThrowException() { Given UUID productId =
UUID.randomUUID(); Product product = Product.builder() .id(productId) .name(“Test Product”)
.price(BigDecimal.TEN) .stock(5) .build(); when(productRepository.findById(productId))
.thenReturn(Optional.of(product)); When & Then assertThatThrownBy2)

.isInstanceOf(InsufficientStockException.class); verify(productRepository, never()).save(any()); }
@Test @DisplayName(“Should increase stock when updating with positive quantity”) void
updateStock_WithPositiveQuantity_ShouldIncreaseStock() { Given UUID productId =
UUID.randomUUID(); Product product = Product.builder() .id(productId) .name(“Test Product”)
.price(BigDecimal.TEN) .stock(10) .build(); when(productRepository.findById(productId))
.thenReturn(Optional.of(product)); when(productRepository.save(any(Product.class)))
.thenReturn(product); When productService.updateStock(productId, 5); Then
assertThat(product.getStock()).isEqualTo(15); verify(productRepository).save(product); } }
</sxh> ==== 2.3 Concepts clés ==== <sxh java;gutter:false> @Mock : Crée un faux objet (ne
fait rien par défaut) @Mock private ProductRepository productRepository; @InjectMocks : Injecte
automatiquement les mocks dans la classe testée @InjectMocks private ProductService
productService; when(…).thenReturn(…) : Définit le comportement du mock
when(productRepository.findById(id)).thenReturn(Optional.of(product)); verify(…) : Vérifie qu'une
méthode a été appelée (et combien de fois) verify(productRepository, times(1)).save(any());
verify(productRepository, never()).delete(any()); assertThat(…) : Vérifie le résultat (AssertJ - plus
lisible que assertEquals) assertThat(result.getStock()).isEqualTo(7); assertThat(result).isNotNull();
assertThat(list).hasSize(3); assertThatThrownBy : Vérifie qu'une exception est levée
assertThatThrownBy3) .isInstanceOf(MyException.class) .hasMessage(“Expected message”);
</sxh> ==== 2.4 Tests paramétrés (en plus) ==== <sxh java> import
org.junit.jupiter.params.ParameterizedTest; import org.junit.jupiter.params.provider.CsvSource;
import org.junit.jupiter.params.provider.ValueSource; @ParameterizedTest
@DisplayName(“Should validate price is positive”) @ValueSource(strings = {“-10.00”, “-0.01”,
“0.00”}) void createProduct_WithInvalidPrice_ShouldThrowException(String price) { Given
CreateProductDto dto = new CreateProductDto(); dto.setName(“Test”); dto.setPrice(new
BigDecimal(price)); dto.setStock(10); When & Then assertThatThrownBy4)

.isInstanceOf(InvalidPriceException.class); } @ParameterizedTest @DisplayName(“Should
calculate correct total for different quantities”) @CsvSource({ “1, 10.00, 10.00”, “2, 10.00, 20.00”,
“5, 9.99, 49.95” }) void calculateTotal_WithDifferentQuantities_ShouldReturnCorrectAmount(int
quantity, String unitPrice, String expectedTotal) { Given Product product = Product.builder()
.price(new BigDecimal(unitPrice)) .build(); When BigDecimal total =
productService.calculateTotal(product, quantity); Then
assertThat(total).isEqualByComparingTo(expectedTotal); } </sxh>

Exercice 2 (45min) :

Créer UserServiceTest avec au moins 5 tests :

createUser_WithValidData_ShouldReturnUser1.
createUser_WithDuplicateEmail_ShouldThrowException2.
getUser_WhenExists_ShouldReturnUser3.
getUser_WhenNotExists_ShouldThrowException4.
getUserOrders_ShouldReturnOrderHistory5.

Template fourni :

@ExtendWith(MockitoExtension.class)
@DisplayName("UserService - Unit Tests")
class UserServiceTest {

Last update: 2025/10/28 17:06 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667564

http://slamwiki2.kobject.net/ Printed on 2026/02/17 01:15

 @Mock
 private UserRepository userRepository;

 @Mock
 private OrderRepository orderRepository;

 @InjectMocks
 private UserService userService;

 @Test
 @DisplayName("Should create user with valid data")
 void createUser_WithValidData_ShouldReturnUser() {
 // Given
 CreateUserDto dto = new CreateUserDto("John Doe",
"john@example.com");
 User user = User.builder()
 .id(UUID.randomUUID())
 .name(dto.getName())
 .email(dto.getEmail())
 .build();

when(userRepository.existsByEmail(dto.getEmail())).thenReturn(
false);
when(userRepository.save(any(User.class))).thenReturn(user);

 // When
 User result = userService.createUser(dto);

 // Then
 assertThat(result).isNotNull();
assertThat(result.getEmail()).isEqualTo("john@example.com");
 verify(userRepository).save(any(User.class));
 }

 // TODO: Implémenter les 4 autres tests
}

Critères de validation :

✅ Tous les tests passent (mvn test)
✅ Utilisation correcte des mocks
✅ Pattern AAA (Arrange, Act, Assert) respecté
✅ Messages d'erreur explicites avec @DisplayName

===== Partie 3 : Tests d'Intégration (1h15) =====

Test d'intégration : Teste le fonctionnement complet de l'API (Controller → Service
→ Repository → DB)

==== 3.1 Configuration de base ==== <sxh java> package com.ecommerce.controller; import
com.ecommerce.domain.Product; import com.ecommerce.domain.Category; import
com.ecommerce.repository.ProductRepository; import

2026/02/17 01:15 5/10 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

com.ecommerce.repository.CategoryRepository; import org.junit.jupiter.api.BeforeEach; import
org.junit.jupiter.api.Test; import org.junit.jupiter.api.DisplayName; import
org.springframework.beans.factory.annotation.Autowired; import
org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc; import
org.springframework.boot.test.context.SpringBootTest; import
org.springframework.http.MediaType; import org.springframework.test.context.ActiveProfiles;
import org.springframework.test.web.servlet.MockMvc; import
org.springframework.transaction.annotation.Transactional; import java.math.BigDecimal; import
static org.hamcrest.Matchers.*; import static
org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*; import static
org.springframework.test.web.servlet.result.MockMvcResultMatchers.*; import static
org.springframework.test.web.servlet.result.MockMvcResultHandlers.*; @SpringBootTest
@AutoConfigureMockMvc @ActiveProfiles(“test”) @Transactional Rollback automatique après
chaque test @DisplayName(“ProductController - Integration Tests”) class
ProductControllerIntegrationTest { @Autowired private MockMvc mockMvc; @Autowired private
ProductRepository productRepository; @Autowired private CategoryRepository
categoryRepository; private Category electronics; @BeforeEach void setUp() { Nettoyage (si
@Transactional ne suffit pas) productRepository.deleteAll(); categoryRepository.deleteAll();
Données de test electronics = categoryRepository.save(new Category(“Electronics”, “Electronic
devices”)); } @Test @DisplayName(“GET /products/{id} should return 200 when product exists”)
void getProduct_WhenExists_ShouldReturn200() throws Exception { Given Product product =
productRepository.save(Product.builder() .name(“iPhone 15”) .price(new BigDecimal(“999.99”))
.stock(50) .category(electronics) .build()); When & Then mockMvc.perform(get(“/products/{id}”,
product.getId())) .andDo(print()) Affiche la requête/réponse (utile pour déboguer)
.andExpect(status().isOk()) .andExpect(content().contentType(MediaType.APPLICATION_JSON))
.andExpect(jsonPath(“$.id”).value(product.getId().toString()))
.andExpect(jsonPath(“$.name”).value(“iPhone 15”)) .andExpect(jsonPath(“$.price”).value(999.99))
.andExpect(jsonPath(“$.stock”).value(50))
.andExpect(jsonPath(“$.category.name”).value(“Electronics”)); } @Test @DisplayName(“GET
/products/{id} should return 404 when product not found”) void
getProduct_WhenNotExists_ShouldReturn404() throws Exception { When & Then
mockMvc.perform(get(“/products/{id}”, “00000000-0000-0000-0000-000000000000”))
.andExpect(status().isNotFound()) .andExpect(jsonPath(“$.message”).exists()); } @Test
@DisplayName(“POST /products should return 201 with valid data”) void
createProduct_WithValidData_ShouldReturn201() throws Exception { Given String requestBody =
“”“ { “name”: “iPad Pro”, “price”: 799.99, “stock”: 30, “categoryId”: ”%s“ }
”“”.formatted(electronics.getId()); When & Then mockMvc.perform(post(“/products”)
.contentType(MediaType.APPLICATION_JSON) .content(requestBody)) .andDo(print())
.andExpect(status().isCreated()) .andExpect(header().exists(“Location”))
.andExpect(jsonPath(“$.id”).exists()) .andExpect(jsonPath(“$.name”).value(“iPad Pro”))
.andExpect(jsonPath(“$.price”).value(799.99)) .andExpect(jsonPath(“$.stock”).value(30)); } @Test
@DisplayName(“POST /products should return 400 with invalid data”) void
createProduct_WithInvalidData_ShouldReturn400() throws Exception { Given - prix négatif String
requestBody = “”“ { “name”: “Invalid Product”, “price”: -10.00, “stock”: 10, “categoryId”: ”%s“ }
”“”.formatted(electronics.getId()); When & Then mockMvc.perform(post(“/products”)
.contentType(MediaType.APPLICATION_JSON) .content(requestBody))
.andExpect(status().isBadRequest()) .andExpect(jsonPath(“$.errors”).isArray()); } @Test
@DisplayName(“PUT /products/{id}/stock should update stock correctly”) void
updateStock_WithValidQuantity_ShouldReturn200() throws Exception { Given Product product =
productRepository.save(Product.builder() .name(“Test Product”) .price(BigDecimal.TEN)
.stock(10) .category(electronics) .build()); String requestBody = “”“ { “quantity”: 5 } ”“”; When &
Then mockMvc.perform(put(“/products/{id}/stock”, product.getId())
.contentType(MediaType.APPLICATION_JSON) .content(requestBody)) .andExpect(status().isOk())
.andExpect(jsonPath(“$.stock”).value(15)); } @Test @DisplayName(“GET /products should return
paginated list”) void getProducts_ShouldReturnPaginatedList() throws Exception { Given
productRepository.save(Product.builder() .name(“Product 1”) .price(BigDecimal.TEN) .stock(10)

Last update: 2025/10/28 17:06 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667564

http://slamwiki2.kobject.net/ Printed on 2026/02/17 01:15

.category(electronics) .build()); productRepository.save(Product.builder() .name(“Product 2”)

.price(BigDecimal.valueOf(20)) .stock(20) .category(electronics) .build()); When & Then
mockMvc.perform(get(“/products”) .param(“page”, “0”) .param(“size”, “10”))
.andExpect(status().isOk()) .andExpect(jsonPath(“$.content”).isArray())
.andExpect(jsonPath(“$.content”, hasSize(2))) .andExpect(jsonPath(“$.totalElements”).value(2)); }
@Test @DisplayName(“GET /products should filter by category”) void
getProducts_WithCategoryFilter_ShouldReturnFilteredList() throws Exception { Given Category
books = categoryRepository.save(new Category(“Books”, “Books category”));
productRepository.save(Product.builder() .name(“iPhone”) .price(BigDecimal.valueOf(999))
.stock(10) .category(electronics) .build()); productRepository.save(Product.builder() .name(“Java
Book”) .price(BigDecimal.valueOf(50)) .stock(20) .category(books) .build()); When & Then
mockMvc.perform(get(“/products”) .param(“categoryId”, electronics.getId().toString()))
.andExpect(status().isOk()) .andExpect(jsonPath(“$.content”, hasSize(1)))
.andExpect(jsonPath(“$.content[0].name”).value(“iPhone”)); } } </sxh> ==== 3.2 Concepts clés
==== <sxh java;gutter:false> @SpringBootTest : Lance toute l'application Spring
@SpringBootTest @AutoConfigureMockMvc : Configure MockMvc pour simuler les requêtes HTTP
@AutoConfigureMockMvc @ActiveProfiles(“test”) : Utilise application-test.properties
@ActiveProfiles(“test”) @Transactional : Rollback automatique après chaque test @Transactional
MockMvc : Simule des requêtes HTTP sans démarrer le serveur
mockMvc.perform(get(“/products/123”)) .andExpect(status().isOk())
.andExpect(jsonPath(“$.name”).value(“iPhone”)); jsonPath : Parcourt la réponse JSON avec des
expressions jsonPath(“$.name”) Champ direct jsonPath(“$.category.name”) Objet imbriqué
jsonPath(“$.items[0].name”) Premier élément d'un tableau jsonPath(“$.items”, hasSize(3)) Taille
du tableau </sxh> ==== 3.3 Test avec détection N+1 ==== <sxh java> import
io.hypersistence.utils.jdbc.validator.SQLStatementCountValidator; import static
io.hypersistence.utils.jdbc.validator.SQLStatementCountValidator.*; @Test @DisplayName(“GET
/users/{id}/orders should not trigger N+1 queries”) void
getUserOrders_ShouldNotTriggerNPlusOne() throws Exception { Given User user =
userRepository.save(new User(“John”, “john@example.com”)); for (int i = 0; i < 5; i++) { Order
order = new Order(user); order.addItem(new OrderItem(product1, 1, product1.getPrice()));
order.addItem(new OrderItem(product2, 2, product2.getPrice())); orderRepository.save(order); }
When SQLStatementCountValidator.reset(); mockMvc.perform(get(“/users/{id}/orders”,
user.getId())) .andExpect(status().isOk()) .andExpect(jsonPath(“$”, hasSize(5)))
.andExpect(jsonPath(“$[0].items”, hasSize(2))); Then - Vérifier le nombre de requêtes SQL
assertSelectCount(2); 1 pour User + 1 pour Orders avec items (JOIN FETCH) } </sxh>

Exercice 3 (1h) :

Créer UserControllerIntegrationTest et
OrderControllerIntegrationTest avec :

UserController (30min) :

POST /users - Création valide → 2011.
POST /users - Email déjà utilisé → 409 Conflict2.
GET /users/{id} - Utilisateur existant → 2003.
GET /users/{id} - Utilisateur inexistant → 4044.
GET /users/{id}/recommendations - Retourne des produits → 2005.

OrderController (30min) :

POST /orders - Création valide → 2011.
POST /orders - Stock insuffisant → 4002.
GET /orders/{id} - Commande existante → 2003.
GET /users/{userId}/orders - Historique → 2004.

2026/02/17 01:15 7/10 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Bonus : Test N+1 sur l'historique des commandes5.

Critères de validation :

✅ Tous les tests passent (mvn verify)
✅ @BeforeEach pour préparer les données
✅ Vérification des codes HTTP corrects
✅ Vérification du contenu JSON retourné
✅ Au moins 1 test de performance (N+1)

===== Partie 4 : Couverture de code avec JaCoCo (20min) ===== ==== 4.1 Configuration
Maven ==== <sxh xml> <!– pom.xml –> <build> <plugins> <!– JaCoCo pour la couverture de
code –> <plugin> <groupId>org.jacoco</groupId> <artifactId>jacoco-maven-plugin</artifactId>
<version>0.8.11</version> <executions> <execution> <goals> <goal>prepare-agent</goal>
</goals> </execution> <execution> <id>report</id> <phase>test</phase> <goals>
<goal>report</goal> </goals> </execution> <execution> <id>jacoco-check</id> <goals>
<goal>check</goal> </goals> <configuration> <rules> <rule>
<element>PACKAGE</element> <limits> <limit> <counter>LINE</counter>
<value>COVEREDRATIO</value> <minimum>0.70</minimum> </limit> </limits> </rule>
</rules> </configuration> </execution> </executions> </plugin> <!– Surefire pour les tests
unitaires –> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-
surefire-plugin</artifactId> <version>3.2.2</version> <configuration> <includes>
<include>/*Test.java</include> </includes> <excludes>
<exclude>/*IntegrationTest.java</exclude> </excludes> </configuration> </plugin> <!–
Failsafe pour les tests d'intégration –> <plugin> <groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId> <version>3.2.2</version> <configuration>
<includes> <include>/*IntegrationTest.java</include> </includes> </configuration>
<executions> <execution> <goals> <goal>integration-test</goal>
<goal>verify</goal> </goals> </execution> </executions> </plugin> </plugins>
</build> </sxh> ==== 4.2 Commandes Maven ==== <sxh bash;gutter:false> # Tests
unitaires uniquement (rapides) mvn clean test # Tests unitaires + rapport de
couverture mvn clean test jacoco:report # Tous les tests (unitaires + intégration) mvn
clean verify # Voir le rapport de couverture open target/site/jacoco/index.html </sxh>
==== 4.3 Exclusion de certaines classes ==== <sxh xml> <configuration> <excludes>
<!– Exclure les entités JPA –> <exclude>/domain/</exclude> <!– Exclure les DTOs –>
<exclude>/dto/</exclude> <!– Exclure la classe main –>
<exclude>/EcommerceApplication.class</exclude> </excludes> </configuration> </sxh>

Exercice 4 (10min) :

Ajouter la configuration JaCoCo dans pom.xml1.
Lancer mvn clean test jacoco:report2.
Ouvrir target/site/jacoco/index.html dans un navigateur3.
Identifier les classes avec une couverture < 70%4.
Ajouter des tests pour améliorer la couverture5.

===== Partie 5 : GitHub Actions - Pipeline CI/CD complète (40min) ===== ==== 5.1 Workflow
complet ==== Créer .github/workflows/ci.yml : <sxh yaml> name: CI/CD Pipeline on:
push: branches: [main, develop] pull_request: branches: [main, develop] jobs: # Job 1 : Tests
unitaires (rapides) unit-tests: name: Unit Tests runs-on: ubuntu-latest steps: - name: Checkout
code uses: actions/checkout@v4 - name: Set up JDK 21 uses: actions/setup-java@v4 with: java-
version: '21' distribution: 'temurin' cache: maven - name: Run unit tests run: mvn clean test -
name: Upload test results if: always() uses: actions/upload-artifact@v3 with: name: unit-test-

Last update: 2025/10/28 17:06 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667564

http://slamwiki2.kobject.net/ Printed on 2026/02/17 01:15

results path: target/surefire-reports/ # Job 2 : Tests d'intégration (plus longs) integration-tests:
name: Integration Tests runs-on: ubuntu-latest needs: unit-tests # Attend que les tests unitaires
passent steps: - name: Checkout code uses: actions/checkout@v4 - name: Set up JDK 21 uses:
actions/setup-java@v4 with: java-version: '21' distribution: 'temurin' cache: maven - name: Run
integration tests run: mvn clean verify -DskipUnitTests - name: Upload test results if: always()
uses: actions/upload-artifact@v3 with: name: integration-test-results path: target/failsafe-reports/
Job 3 : Analyse de couverture coverage: name: Code Coverage runs-on: ubuntu-latest needs:
integration-tests steps: - name: Checkout code uses: actions/checkout@v4 - name: Set up JDK 21
uses: actions/setup-java@v4 with: java-version: '21' distribution: 'temurin' cache: maven - name:
Generate coverage report run: mvn clean verify jacoco:report - name: Upload coverage to
Codecov uses: codecov/codecov-action@v3 with: files: ./target/site/jacoco/jacoco.xml flags:
unittests name: codecov-umbrella fail_ci_if_error: false - name: Upload JaCoCo report uses:
actions/upload-artifact@v3 with: name: jacoco-report path: target/site/jacoco/ # Job 4 : Build
(optionnel - pour vérifier que l'app compile) build: name: Build Application runs-on: ubuntu-latest
needs: coverage steps: - name: Checkout code uses: actions/checkout@v4 - name: Set up JDK 21
uses: actions/setup-java@v4 with: java-version: '21' distribution: 'temurin' cache: maven - name:
Build with Maven run: mvn clean package -DskipTests - name: Upload artifact uses:
actions/upload-artifact@v3 with: name: ecommerce-api path: target/*.jar </sxh> ==== 5.2
Configuration pour séparer les tests ==== <sxh xml> <!– pom.xml - Ajout de propriétés –>
<properties> <skipUnitTests>false</skipUnitTests>
<skipIntegrationTests>false</skipIntegrationTests> </properties> <build> <plugins> <plugin>
<groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId>
<configuration> <skipTests>${skipUnitTests}</skipTests> </configuration> </plugin> <plugin>
<groupId>org.apache.maven.plugins</groupId> <artifactId>maven-failsafe-plugin</artifactId>
<configuration> <skipTests>${skipIntegrationTests}</skipTests> </configuration> </plugin>
</plugins> </build> </sxh> ==== 5.3 Badges pour le README ==== <sxh
markdown;gutter:false> # E-Commerce API
![CI/CD](https://github.com/VOTRE-USERNAME/VOTRE-REPO/actions/workflows/ci.yml/badge.svg)
![Coverage](https://codecov.io/gh/VOTRE-USERNAME/VOTRE-REPO/branch/main/graph/badge.svg)
Description API REST pour un système e-commerce avec Spring Boot 3. ## Badges de statut -
Build : Statut de la compilation - Tests : Résultat des tests automatisés - Coverage :
Pourcentage de code couvert par les tests ## Commandes ```bash # Tests unitaires uniquement
mvn test # Tests d'intégration uniquement mvn verify -DskipUnitTests # Tous les tests mvn verify
Rapport de couverture mvn test jacoco:report ``` </sxh> ==== 5.4 Protection de branche
(optionnel) ==== Dans GitHub : - Settings → Branches → Add rule - Branch name pattern :
main - Cocher : * ✅ Require status checks to pass before merging * ✅ Require branches to be up to
date before merging * Sélectionner : Unit Tests, Integration Tests, Code Coverage -
Create

Exercice 5 (30min) :

Créer le fichier .github/workflows/ci.yml1.
Commit et push sur GitHub2.
Vérifier dans l'onglet “Actions” que les 4 jobs s'exécutent3.
Ajouter les badges dans README.md4.
(Bonus) Configurer la protection de branche main5.
(Bonus) Créer une PR et vérifier que les tests sont obligatoires6.

Vérifications :

✅ Les tests unitaires passent en < 1min
✅ Les tests d'intégration passent en < 3min
✅ Le rapport de couverture est généré
✅ L'artifact .jar est uploadé

https://github.com/VOTRE-USERNAME/VOTRE-REPO/actions/workflows/ci.yml/badge.svg
https://codecov.io/gh/VOTRE-USERNAME/VOTRE-REPO/branch/main/graph/badge.svg

2026/02/17 01:15 9/10 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

===== Récapitulatif des commandes ===== <sxh bash;gutter:false> # ==========
Développement local ========== # Lancer l'app en mode dev mvn spring-boot:run -Dspring-
boot.run.profiles=dev # Lancer l'app en mode test mvn spring-boot:run -Dspring-
boot.run.profiles=test # ========== Tests ========== # Tests unitaires uniquement
(rapides, < 10s) mvn clean test # Tests d'intégration uniquement mvn clean verify -
DskipUnitTests # Tous les tests mvn clean verify # Tests avec rapport de couverture mvn clean
test jacoco:report # ========== Couverture de code ========== # Générer le rapport
JaCoCo mvn jacoco:report # Ouvrir le rapport open target/site/jacoco/index.html # Vérifier le seuil
de couverture mvn jacoco:check # ========== Build ========== # Compiler sans tests
mvn clean package -DskipTests # Build complet mvn clean install </sxh> ===== Livrables
attendus (réaliste pour 4h) =====

Must have (priorité absolue)

Configuration (30min) :

✅ 4 profils configurés : commun, dev, test, prod
✅ Application démarre avec chaque profil
✅ Variables d'environnement documentées

Tests unitaires (1h15) :

✅ ProductServiceTest complet (≥5 tests)
✅ UserServiceTest complet (≥5 tests)
✅ Utilisation correcte des mocks
✅ Tests paramétrés pour au moins 1 cas
✅ Tous les tests passent (mvn test)

Tests d'intégration (1h15) :

✅ ProductControllerIntegrationTest complet (≥6 tests)
✅ UserControllerIntegrationTest complet (≥5 tests)
✅ OrderControllerIntegrationTest complet (≥4 tests)
✅ Vérification des codes HTTP (200, 201, 400, 404, 409)
✅ Au moins 1 test de détection N+1
✅ Tous les tests passent (mvn verify)

Couverture + CI/CD (1h) :

✅ JaCoCo configuré avec seuil minimum 70%
✅ Workflow GitHub Actions complet (4 jobs)
✅ Séparation unit tests / integration tests
✅ Badges CI/CD dans le README
✅ Pipeline qui passe au vert sur GitHub

Nice to have (bonus si temps)

Protection de branche main configurée
Tests de contrat avec Spring Cloud Contract
SonarCloud intégré pour la qualité de code
Tests de charge basiques avec JMeter
Documentation Swagger/OpenAPI testée

===== Aide-mémoire : Différences clés ===== ^ Aspect ^ Test Unitaire ^ Test d'Intégration ^
| Vitesse | ⚡ Très rapide (<10ms) | � Plus lent (100-500ms) | | Base de données | ❌ Non (mocks)

Last update: 2025/10/28 17:06 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667564

http://slamwiki2.kobject.net/ Printed on 2026/02/17 01:15

| ✅ Oui (H2 en mémoire) | | Contexte Spring | ❌ Non | ✅ Oui (toute l'app) | | Annotations |
@ExtendWith(MockitoExtension.class) | @SpringBootTest | | Ce qu'on teste | Logique
métier isolée | Flux complet de bout en bout | | Quand ça échoue | Bug dans la logique | Bug
d'intégration/config | | Commande Maven | mvn test | mvn verify | | Fichier de tests |
*Test.java | *IntegrationTest.java | ===== Bonnes pratiques à retenir =====

Tests unitaires

✅ Rapides : < 10ms par test
✅ Isolés : pas de dépendances externes (DB, réseau)
✅ AAA Pattern : Arrange, Act, Assert
✅ 1 test = 1 comportement : ne pas tester plusieurs choses
✅ Nommage explicite :
methodName_WhenCondition_ShouldExpectedBehavior
✅ Mocks minimalistes : seulement les dépendances nécessaires

Tests d'intégration

✅ Réalistes : données de test cohérentes
✅ Nettoyage : @Transactional ou @BeforeEach avec deleteAll()
✅ Vérifications complètes : code HTTP + contenu + headers
✅ Performance : détecter les N+1 avec Hypersistence
✅ Cas d'erreur : tester les 400, 404, 409, 500

CI/CD

✅ Fail fast : tests unitaires avant intégration
✅ Parallélisation : jobs indépendants
✅ Artifacts : conserver les rapports et JARs
✅ Protection : branche main protégée
✅ Documentation : badges visibles

===== Ressources essentielles ===== * Spring Boot Testing - Documentation officielle * JUnit 5
User Guide * Mockito Documentation * AssertJ Documentation * JaCoCo Maven Plugin * GitHub
Actions - Documentation * Baeldung - Testing in Spring Boot

1)

) → productService.getProduct(productId
2)

) → productService.updateStock(productId, -10
3)

) → service.doSomething(
4)

) → productService.createProduct(dto

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667564

Last update: 2025/10/28 17:06

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.testing
https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/Mockito.html
https://assertj.github.io/doc/
https://www.jacoco.org/jacoco/trunk/doc/maven.html
https://docs.github.com/en/actions
https://docs.github.com/en/actions
https://www.baeldung.com/spring-boot-testing
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667564

	Séance 3 - Tests et CI/CD (4h)
	Objectifs pédagogiques
	Partie 0 : Point de départ (15min)
	Must have (priorité absolue)
	Nice to have (bonus si temps)
	Tests unitaires
	Tests d'intégration
	CI/CD

