
2026/02/09 16:22 1/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Séance 3 - Tests et CI/CD (4h)

Objectifs pédagogiques

Comprendre la différence entre tests unitaires et tests d'intégration
Écrire des tests simples et efficaces avec les bonnes pratiques
Gérer les profils Spring (dev/test/prod)
Mettre en place une pipeline CI complète avec GitHub Actions
Mesurer la couverture de code

Partie 0 : Point de départ (15min)

Point avancement TD2

Qui a terminé les associations Order/OrderItem/User ?
Qui a résolu des problèmes N+1 ?
Décision : Ceux qui ont fini peuvent commencer les tests, les autres finalisent le TD2

Partie 1 : Configuration multi-environnements (30min)

1.1 Stratégie de profils Spring

Objectif : Séparer les configurations selon l'environnement (dev, test, prod)

Structure des fichiers

src/main/resources/
├── application.properties # Configuration commune
├── application-dev.properties # Développement local
├── application-test.properties # Tests automatisés
└── application-prod.properties # Production

application.properties (commun)

Configuration commune à tous les profils
spring.application.name=ecommerce-api
server.port=8080

JPA commun

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

spring.jpa.open-in-view=false
spring.jpa.properties.hibernate.jdbc.time_zone=UTC

Validation
spring.jackson.deserialization.fail-on-unknown-properties=true

application-dev.properties

Base H2 fichier pour le dev
spring.datasource.url=jdbc:h2:file:./data/ecommerce-dev
spring.datasource.username=sa
spring.datasource.password=

Console H2 activée
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

DDL auto pour en dev
spring.jpa.hibernate.ddl-auto=update

Logs verbeux
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true
logging.level.com.ecommerce=DEBUG
logging.level.io.hypersistence.utils=DEBUG

application-test.properties

Base H2 en mémoire pour les tests
spring.datasource.url=jdbc:h2:mem:testdb;MODE=PostgreSQL;DB_CLOSE_DELAY=-1
spring.datasource.username=sa
spring.datasource.password=

Recréation du schéma à chaque test
spring.jpa.hibernate.ddl-auto=create-drop

Logs minimaux (sauf erreurs)
spring.jpa.show-sql=false
logging.level.com.ecommerce=INFO
logging.level.org.hibernate=WARN

Performance tests
spring.jpa.properties.hibernate.generate_statistics=true

Désactivation fonctionnalités non nécessaires en test
spring.h2.console.enabled=false

2026/02/09 16:22 3/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

application-prod.properties

Base PostgreSQL (exemple)
spring.datasource.url=${DATABASE_URL}
spring.datasource.username=${DB_USERNAME}
spring.datasource.password=${DB_PASSWORD}

JAMAIS de DDL auto en production
spring.jpa.hibernate.ddl-auto=validate

Logs minimaux
spring.jpa.show-sql=false
logging.level.com.ecommerce=INFO

Sécurité
spring.h2.console.enabled=false

1.2 Activation des profils

Dans IntelliJ : Run Configuration > Active profiles: dev
Ou via variable d'environnement
export SPRING_PROFILES_ACTIVE=dev

Via ligne de commande
mvn spring-boot:run -Dspring-boot.run.profiles=dev

Exercice 1 (15min) :

Créer les 4 fichiers de configuration1.
Tester le lancement avec le profil dev2.
Vérifier que la console H2 est accessible sur /h2-console3.
Relancer avec le profil test et constater les différences de logs4.

Partie 2 : Tests Unitaires (1h15)

Principe clé : Un test unitaire teste UNE classe isolée, sans base de données, très rapidement

2.1 Dépendances nécessaires (pom.xml)

<dependencies>
 <!-- Spring Boot Test (inclut JUnit 5, Mockito, AssertJ) -->

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

2.2 Premier test simple : ProductService

package com.ecommerce.service;

import com.ecommerce.domain.Product;
import com.ecommerce.domain.Category;
import com.ecommerce.repository.ProductRepository;
import com.ecommerce.exception.ProductNotFoundException;
import com.ecommerce.exception.InsufficientStockException;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.InjectMocks;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;

import java.math.BigDecimal;
import java.util.Optional;
import java.util.UUID;

import static org.assertj.core.api.Assertions.*;
import static org.mockito.Mockito.*;

@ExtendWith(MockitoExtension.class)
@DisplayName("ProductService - Unit Tests")
class ProductServiceTest {

 @Mock
 private ProductRepository productRepository;

 @InjectMocks
 private ProductService productService;

 @Test
 @DisplayName("Should return product when it exists")
 void getProduct_WhenExists_ShouldReturnProduct() {
 // Given (Arrange)
 UUID productId = UUID.randomUUID();
 Category category = new Category("Electronics", "Devices");
 Product expectedProduct = Product.builder()
 .id(productId)
 .name("iPhone")
 .price(new BigDecimal("999.99"))
 .stock(10)
 .category(category)
 .build();

2026/02/09 16:22 5/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 when(productRepository.findById(productId))
 .thenReturn(Optional.of(expectedProduct));

 // When (Act)
 Product result = productService.getProduct(productId);

 // Then (Assert)
 assertThat(result).isNotNull();
 assertThat(result.getName()).isEqualTo("iPhone");
 assertThat(result.getPrice()).isEqualByComparingTo("999.99");
 assertThat(result.getStock()).isEqualTo(10);
 verify(productRepository, times(1)).findById(productId);
 verifyNoMoreInteractions(productRepository);
 }

 @Test
 @DisplayName("Should throw exception when product not found")
 void getProduct_WhenNotExists_ShouldThrowException() {
 // Given
 UUID productId = UUID.randomUUID();
 when(productRepository.findById(productId))
 .thenReturn(Optional.empty());

 // When & Then
 assertThatThrownBy(() -> productService.getProduct(productId))
 .isInstanceOf(ProductNotFoundException.class)
 .hasMessageContaining(productId.toString());
 verify(productRepository).findById(productId);
 }

 @Test
 @DisplayName("Should decrease stock when updating with negative quantity")
 void updateStock_WithNegativeQuantity_ShouldDecreaseStock() {
 // Given
 UUID productId = UUID.randomUUID();
 Product product = Product.builder()
 .id(productId)
 .name("Test Product")
 .price(BigDecimal.TEN)
 .stock(10)
 .build();
 when(productRepository.findById(productId))
 .thenReturn(Optional.of(product));
 when(productRepository.save(any(Product.class)))
 .thenReturn(product);

 // When
 productService.updateStock(productId, -3);

 // Then
 assertThat(product.getStock()).isEqualTo(7);
 verify(productRepository).save(product);
 }

 @Test
 @DisplayName("Should throw exception when insufficient stock")

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

 void updateStock_WithInsufficientStock_ShouldThrowException() {
 // Given
 UUID productId = UUID.randomUUID();
 Product product = Product.builder()
 .id(productId)
 .name("Test Product")
 .price(BigDecimal.TEN)
 .stock(5)
 .build();
 when(productRepository.findById(productId))
 .thenReturn(Optional.of(product));

 // When & Then
 assertThatThrownBy(() -> productService.updateStock(productId, -10))
 .isInstanceOf(InsufficientStockException.class);
 verify(productRepository, never()).save(any());
 }

 @Test
 @DisplayName("Should increase stock when updating with positive quantity")
 void updateStock_WithPositiveQuantity_ShouldIncreaseStock() {
 // Given
 UUID productId = UUID.randomUUID();
 Product product = Product.builder()
 .id(productId)
 .name("Test Product")
 .price(BigDecimal.TEN)
 .stock(10)
 .build();
 when(productRepository.findById(productId))
 .thenReturn(Optional.of(product));
 when(productRepository.save(any(Product.class)))
 .thenReturn(product);

 // When
 productService.updateStock(productId, 5);

 // Then
 assertThat(product.getStock()).isEqualTo(15);
 verify(productRepository).save(product);
 }
}

2.3 Concepts clés

// @Mock : Crée un faux objet (ne fait rien par défaut)
@Mock
private ProductRepository productRepository;

// @InjectMocks : Injecte automatiquement les mocks dans la classe testée
@InjectMocks
private ProductService productService;

2026/02/09 16:22 7/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

// when(...).thenReturn(...) : Définit le comportement du mock
when(productRepository.findById(id)).thenReturn(Optional.of(product));

// verify(...) : Vérifie qu'une méthode a été appelée (et combien de fois)
verify(productRepository, times(1)).save(any());
verify(productRepository, never()).delete(any());

// assertThat(...) : Vérifie le résultat (AssertJ - plus lisible que assertEquals)
assertThat(result.getStock()).isEqualTo(7);
assertThat(result).isNotNull();
assertThat(list).hasSize(3);

// assertThatThrownBy : Vérifie qu'une exception est levée
assertThatThrownBy(() -> service.doSomething())
 .isInstanceOf(MyException.class)
 .hasMessage("Expected message");

2.4 Tests paramétrés (en plus)

import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.CsvSource;
import org.junit.jupiter.params.provider.ValueSource;

@ParameterizedTest
@DisplayName("Should validate price is positive")
@ValueSource(strings = {"-10.00", "-0.01", "0.00"})
void createProduct_WithInvalidPrice_ShouldThrowException(String price) {
 // Given
 CreateProductDto dto = new CreateProductDto();
 dto.setName("Test");
 dto.setPrice(new BigDecimal(price));
 dto.setStock(10);

 // When & Then
 assertThatThrownBy(() -> productService.createProduct(dto))
 .isInstanceOf(InvalidPriceException.class);
}

@ParameterizedTest
@DisplayName("Should calculate correct total for different quantities")
@CsvSource({
 "1, 10.00, 10.00",
 "2, 10.00, 20.00",
 "5, 9.99, 49.95"
})
void calculateTotal_WithDifferentQuantities_ShouldReturnCorrectAmount(
 int quantity,
 String unitPrice,
 String expectedTotal
) {
 // Given
 Product product = Product.builder()
 .price(new BigDecimal(unitPrice))

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

 .build();

 // When
 BigDecimal total = productService.calculateTotal(product, quantity);

 // Then
 assertThat(total).isEqualByComparingTo(expectedTotal);
}

Exercice 2 (45min) :

Créer UserServiceTest avec au moins 5 tests :

createUser_WithValidData_ShouldReturnUser1.
createUser_WithDuplicateEmail_ShouldThrowException2.
getUser_WhenExists_ShouldReturnUser3.
getUser_WhenNotExists_ShouldThrowException4.
getUserOrders_ShouldReturnOrderHistory5.

Template fourni :

@ExtendWith(MockitoExtension.class)
@DisplayName("UserService - Unit Tests")
class UserServiceTest {

 @Mock
 private UserRepository userRepository;

 @Mock
 private OrderRepository orderRepository;

 @InjectMocks
 private UserService userService;

 @Test
 @DisplayName("Should create user with valid data")
 void createUser_WithValidData_ShouldReturnUser() {
 // Given
 CreateUserDto dto = new CreateUserDto("John Doe",
"john@example.com");
 User user = User.builder()
 .id(UUID.randomUUID())
 .name(dto.getName())
 .email(dto.getEmail())
 .build();

when(userRepository.existsByEmail(dto.getEmail())).thenReturn(false);
 when(userRepository.save(any(User.class))).thenReturn(user);

 // When
 User result = userService.createUser(dto);

 // Then
 assertThat(result).isNotNull();
 assertThat(result.getEmail()).isEqualTo("john@example.com");

2026/02/09 16:22 9/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 verify(userRepository).save(any(User.class));
 }

 // TODO: Implémenter les 4 autres tests
}

Critères de validation :

✅ Tous les tests passent (mvn test)
✅ Utilisation correcte des mocks
✅ Pattern AAA (Arrange, Act, Assert) respecté
✅ Messages d'erreur explicites avec @DisplayName

Partie 3 : Tests d'Intégration (1h15)

Test d'intégration : Teste le fonctionnement complet de l'API (Controller → Service → Repository
→ DB)

3.1 Configuration de base

package com.ecommerce.controller;

import com.ecommerce.domain.Product;
import com.ecommerce.domain.Category;
import com.ecommerce.repository.ProductRepository;
import com.ecommerce.repository.CategoryRepository;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.DisplayName;
import org.springframework.beans.factory.annotation.Autowired;
import
org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.http.MediaType;
import org.springframework.test.context.ActiveProfiles;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.transaction.annotation.Transactional;

import java.math.BigDecimal;

import static org.hamcrest.Matchers.*;
import static
org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;
import static org.springframework.test.web.servlet.result.MockMvcResultHandlers.*;

@SpringBootTest
@AutoConfigureMockMvc

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

@ActiveProfiles("test")
@Transactional // Rollback automatique après chaque test
@DisplayName("ProductController - Integration Tests")
class ProductControllerIntegrationTest {

 @Autowired
 private MockMvc mockMvc;

 @Autowired
 private ProductRepository productRepository;

 @Autowired
 private CategoryRepository categoryRepository;

 private Category electronics;

 @BeforeEach
 void setUp() {
 // Nettoyage (si @Transactional ne suffit pas)
 productRepository.deleteAll();
 categoryRepository.deleteAll();
 // Données de test
 electronics = categoryRepository.save(
 new Category("Electronics", "Electronic devices")
);
 }

 @Test
 @DisplayName("GET /products/{id} should return 200 when product exists")
 void getProduct_WhenExists_ShouldReturn200() throws Exception {
 // Given
 Product product = productRepository.save(
 Product.builder()
 .name("iPhone 15")
 .price(new BigDecimal("999.99"))
 .stock(50)
 .category(electronics)
 .build()
);

 // When & Then
 mockMvc.perform(get("/products/{id}", product.getId()))
 .andDo(print()) // Affiche la requête/réponse (utile pour déboguer)
 .andExpect(status().isOk())
 .andExpect(content().contentType(MediaType.APPLICATION_JSON))
 .andExpect(jsonPath("$.id").value(product.getId().toString()))
 .andExpect(jsonPath("$.name").value("iPhone 15"))
 .andExpect(jsonPath("$.price").value(999.99))
 .andExpect(jsonPath("$.stock").value(50))
 .andExpect(jsonPath("$.category.name").value("Electronics"));
 }

 @Test
 @DisplayName("GET /products/{id} should return 404 when product not found")
 void getProduct_WhenNotExists_ShouldReturn404() throws Exception {
 // When & Then

2026/02/09 16:22 11/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 mockMvc.perform(get("/products/{id}",
"00000000-0000-0000-0000-000000000000"))
 .andExpect(status().isNotFound())
 .andExpect(jsonPath("$.message").exists());
 }

 @Test
 @DisplayName("POST /products should return 201 with valid data")
 void createProduct_WithValidData_ShouldReturn201() throws Exception {
 // Given
 String requestBody = """
 {
 "name": "iPad Pro",
 "price": 799.99,
 "stock": 30,
 "categoryId": "%s"
 }
 """.formatted(electronics.getId());

 // When & Then
 mockMvc.perform(post("/products")
 .contentType(MediaType.APPLICATION_JSON)
 .content(requestBody))
 .andDo(print())
 .andExpect(status().isCreated())
 .andExpect(header().exists("Location"))
 .andExpect(jsonPath("$.id").exists())
 .andExpect(jsonPath("$.name").value("iPad Pro"))
 .andExpect(jsonPath("$.price").value(799.99))
 .andExpect(jsonPath("$.stock").value(30));
 }

 @Test
 @DisplayName("POST /products should return 400 with invalid data")
 void createProduct_WithInvalidData_ShouldReturn400() throws Exception {
 // Given - prix négatif
 String requestBody = """
 {
 "name": "Invalid Product",
 "price": -10.00,
 "stock": 10,
 "categoryId": "%s"
 }
 """.formatted(electronics.getId());

 // When & Then
 mockMvc.perform(post("/products")
 .contentType(MediaType.APPLICATION_JSON)
 .content(requestBody))
 .andExpect(status().isBadRequest())
 .andExpect(jsonPath("$.errors").isArray());
 }

 @Test
 @DisplayName("PUT /products/{id}/stock should update stock correctly")
 void updateStock_WithValidQuantity_ShouldReturn200() throws Exception {

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

 // Given
 Product product = productRepository.save(
 Product.builder()
 .name("Test Product")
 .price(BigDecimal.TEN)
 .stock(10)
 .category(electronics)
 .build()
);

 String requestBody = """
 {
 "quantity": 5
 }
 """;

 // When & Then
 mockMvc.perform(put("/products/{id}/stock", product.getId())
 .contentType(MediaType.APPLICATION_JSON)
 .content(requestBody))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$.stock").value(15));
 }

 @Test
 @DisplayName("GET /products should return paginated list")
 void getProducts_ShouldReturnPaginatedList() throws Exception {
 // Given
 productRepository.save(Product.builder()
 .name("Product 1")
 .price(BigDecimal.TEN)
 .stock(10)
 .category(electronics)
 .build());
 productRepository.save(Product.builder()
 .name("Product 2")
 .price(BigDecimal.valueOf(20))
 .stock(20)
 .category(electronics)
 .build());

 // When & Then
 mockMvc.perform(get("/products")
 .param("page", "0")
 .param("size", "10"))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$.content").isArray())
 .andExpect(jsonPath("$.content", hasSize(2)))
 .andExpect(jsonPath("$.totalElements").value(2));
 }

 @Test
 @DisplayName("GET /products should filter by category")
 void getProducts_WithCategoryFilter_ShouldReturnFilteredList() throws Exception
{
 // Given

2026/02/09 16:22 13/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 Category books = categoryRepository.save(new Category("Books", "Books
category"));
 productRepository.save(Product.builder()
 .name("iPhone")
 .price(BigDecimal.valueOf(999))
 .stock(10)
 .category(electronics)
 .build());
 productRepository.save(Product.builder()
 .name("Java Book")
 .price(BigDecimal.valueOf(50))
 .stock(20)
 .category(books)
 .build());

 // When & Then
 mockMvc.perform(get("/products")
 .param("categoryId", electronics.getId().toString()))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$.content", hasSize(1)))
 .andExpect(jsonPath("$.content[0].name").value("iPhone"));
 }
}

3.2 Concepts clés

// @SpringBootTest : Lance toute l'application Spring
@SpringBootTest

// @AutoConfigureMockMvc : Configure MockMvc pour simuler les requêtes HTTP
@AutoConfigureMockMvc

// @ActiveProfiles("test") : Utilise application-test.properties
@ActiveProfiles("test")

// @Transactional : Rollback automatique après chaque test
@Transactional

// MockMvc : Simule des requêtes HTTP sans démarrer le serveur
mockMvc.perform(get("/products/123"))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$.name").value("iPhone"));

// jsonPath : Parcourt la réponse JSON avec des expressions
jsonPath("$.name") // Champ direct
jsonPath("$.category.name") // Objet imbriqué
jsonPath("$.items[0].name") // Premier élément d'un tableau
jsonPath("$.items", hasSize(3)) // Taille du tableau

3.3 Test avec détection N+1

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

import io.hypersistence.utils.jdbc.validator.SQLStatementCountValidator;
import static io.hypersistence.utils.jdbc.validator.SQLStatementCountValidator.*;

@Test
@DisplayName("GET /users/{id}/orders should not trigger N+1 queries")
void getUserOrders_ShouldNotTriggerNPlusOne() throws Exception {
 // Given
 User user = userRepository.save(new User("John", "john@example.com"));
 for (int i = 0; i < 5; i++) {
 Order order = new Order(user);
 order.addItem(new OrderItem(product1, 1, product1.getPrice()));
 order.addItem(new OrderItem(product2, 2, product2.getPrice()));
 orderRepository.save(order);
 }

 // When
 SQLStatementCountValidator.reset();
 mockMvc.perform(get("/users/{id}/orders", user.getId()))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$", hasSize(5)))
 .andExpect(jsonPath("$[0].items", hasSize(2)));

 // Then - Vérifier le nombre de requêtes SQL
 assertSelectCount(2); // 1 pour User + 1 pour Orders avec items (JOIN FETCH)
}

Exercice 3 (1h) :

Créer UserControllerIntegrationTest et OrderControllerIntegrationTest avec :

UserController (30min) :

POST /users - Création valide → 2011.
POST /users - Email déjà utilisé → 409 Conflict2.
GET /users/{id} - Utilisateur existant → 2003.
GET /users/{id} - Utilisateur inexistant → 4044.
GET /users/{id}/recommendations - Retourne des produits → 2005.

OrderController (30min) :

POST /orders - Création valide → 2011.
POST /orders - Stock insuffisant → 4002.
GET /orders/{id} - Commande existante → 2003.
GET /users/{userId}/orders - Historique → 2004.
Bonus : Test N+1 sur l'historique des commandes5.

Critères de validation :

✅ Tous les tests passent (mvn verify)
✅ @BeforeEach pour préparer les données
✅ Vérification des codes HTTP corrects
✅ Vérification du contenu JSON retourné
✅ Au moins 1 test de performance (N+1)

2026/02/09 16:22 15/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Partie 4 : Couverture de code avec JaCoCo (20min)

4.1 Configuration Maven

<!-- pom.xml -->
<build>
 <plugins>
 <!-- JaCoCo pour la couverture de code -->
 <plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>
 <version>0.8.11</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <execution>
 <id>report</id>
 <phase>test</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 <execution>
 <id>jacoco-check</id>
 <goals>
 <goal>check</goal>
 </goals>
 <configuration>
 <rules>
 <rule>
 <element>PACKAGE</element>
 <limits>
 <limit>
 <counter>LINE</counter>
 <value>COVEREDRATIO</value>
 <minimum>0.70</minimum>
 </limit>
 </limits>
 </rule>
 </rules>
 </configuration>
 </execution>
 </executions>
 </plugin>

 <!-- Surefire pour les tests unitaires -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

 <version>3.2.2</version>
 <configuration>
 <includes>
 <include>**/*Test.java</include>
 </includes>
 <excludes>
 <exclude>**/*IntegrationTest.java</exclude>
 </excludes>
 </configuration>
 </plugin>

 <!-- Failsafe pour les tests d'intégration -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>3.2.2</version>
 <configuration>
 <includes>
 <include>**/*IntegrationTest.java</include>
 </includes>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

4.2 Commandes Maven

Tests unitaires uniquement (rapides)
mvn clean test

Tests unitaires + rapport de couverture
mvn clean test jacoco:report

Tous les tests (unitaires + intégration)
mvn clean verify

Voir le rapport de couverture
open target/site/jacoco/index.html

4.3 Exclusion de certaines classes

<configuration>

2026/02/09 16:22 17/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 <excludes>
 <!-- Exclure les entités JPA -->
 <exclude>**/domain/**</exclude>
 <!-- Exclure les DTOs -->
 <exclude>**/dto/**</exclude>
 <!-- Exclure la classe main -->
 <exclude>**/EcommerceApplication.class</exclude>
 </excludes>
</configuration>

Exercice 4 (10min) :

Ajouter la configuration JaCoCo dans pom.xml1.
Lancer mvn clean test jacoco:report2.
Ouvrir target/site/jacoco/index.html dans un navigateur3.
Identifier les classes avec une couverture < 70%4.
Ajouter des tests pour améliorer la couverture5.

Partie 5 : GitHub Actions - Pipeline CI/CD complète (40min)

5.1 Workflow complet

Créer .github/workflows/ci.yml :

name: CI/CD Pipeline

on:
 push:
 branches: [main, develop]
 pull_request:
 branches: [main, develop]

jobs:
 # Job 1 : Tests unitaires (rapides)
 unit-tests:
 name: Unit Tests
 runs-on: ubuntu-latest
 steps:
 - name: Checkout code
 uses: actions/checkout@v4

 - name: Set up JDK 21
 uses: actions/setup-java@v4
 with:
 java-version: '21'
 distribution: 'temurin'
 cache: maven

 - name: Run unit tests

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

 run: mvn clean test

 - name: Upload test results
 if: always()
 uses: actions/upload-artifact@v3
 with:
 name: unit-test-results
 path: target/surefire-reports/

 # Job 2 : Tests d'intégration (plus longs)
 integration-tests:
 name: Integration Tests
 runs-on: ubuntu-latest
 needs: unit-tests # Attend que les tests unitaires passent
 steps:
 - name: Checkout code
 uses: actions/checkout@v4

 - name: Set up JDK 21
 uses: actions/setup-java@v4
 with:
 java-version: '21'
 distribution: 'temurin'
 cache: maven

 - name: Run integration tests
 run: mvn clean verify -DskipUnitTests

 - name: Upload test results
 if: always()
 uses: actions/upload-artifact@v3
 with:
 name: integration-test-results
 path: target/failsafe-reports/

 # Job 3 : Analyse de couverture
 coverage:
 name: Code Coverage
 runs-on: ubuntu-latest
 needs: integration-tests
 steps:
 - name: Checkout code
 uses: actions/checkout@v4

 - name: Set up JDK 21
 uses: actions/setup-java@v4
 with:
 java-version: '21'
 distribution: 'temurin'
 cache: maven

 - name: Generate coverage report
 run: mvn clean verify jacoco:report

 - name: Upload coverage to Codecov
 uses: codecov/codecov-action@v3

2026/02/09 16:22 19/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 with:
 files: ./target/site/jacoco/jacoco.xml
 flags: unittests
 name: codecov-umbrella
 fail_ci_if_error: false

 - name: Upload JaCoCo report
 uses: actions/upload-artifact@v3
 with:
 name: jacoco-report
 path: target/site/jacoco/

 # Job 4 : Build (optionnel - pour vérifier que l'app compile)
 build:
 name: Build Application
 runs-on: ubuntu-latest
 needs: coverage
 steps:
 - name: Checkout code
 uses: actions/checkout@v4

 - name: Set up JDK 21
 uses: actions/setup-java@v4
 with:
 java-version: '21'
 distribution: 'temurin'
 cache: maven

 - name: Build with Maven
 run: mvn clean package -DskipTests

 - name: Upload artifact
 uses: actions/upload-artifact@v3
 with:
 name: ecommerce-api
 path: target/*.jar

5.2 Configuration pour séparer les tests

<!-- pom.xml - Ajout de propriétés -->
<properties>
 <skipUnitTests>false</skipUnitTests>
 <skipIntegrationTests>false</skipIntegrationTests>
</properties>

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skipTests>${skipUnitTests}</skipTests>
 </configuration>

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <configuration>
 <skipTests>${skipIntegrationTests}</skipTests>
 </configuration>
 </plugin>
 </plugins>
</build>

5.3 Badges pour le README

E-Commerce API

![CI/CD](https://github.com/VOTRE-USERNAME/VOTRE-REPO/actions/workflows/ci.yml/badg
e.svg)
![Coverage](https://codecov.io/gh/VOTRE-USERNAME/VOTRE-REPO/branch/main/graph/badge
.svg)

Description
API REST pour un système e-commerce avec Spring Boot 3.

Badges de statut
- **Build** : Statut de la compilation
- **Tests** : Résultat des tests automatisés
- **Coverage** : Pourcentage de code couvert par les tests

Commandes

```bash
# Tests unitaires uniquement
mvn test

# Tests d'intégration uniquement
mvn verify -DskipUnitTests

# Tous les tests
mvn verify

# Rapport de couverture
mvn test jacoco:report
```

5.4 Protection de branche (optionnel)

Dans GitHub :

Settings → Branches → Add rule1.
Branch name pattern : main2.
Cocher :3.

2026/02/09 16:22 21/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

✅ Require status checks to pass before merging
✅ Require branches to be up to date before merging
Sélectionner : Unit Tests, Integration Tests, Code Coverage

Create4.

Exercice 5 (30min) :

Créer le fichier .github/workflows/ci.yml1.
Commit et push sur GitHub2.
Vérifier dans l'onglet “Actions” que les 4 jobs s'exécutent3.
Ajouter les badges dans README.md4.
(Bonus) Configurer la protection de branche main5.
(Bonus) Créer une PR et vérifier que les tests sont obligatoires6.

Vérifications :

✅ Les tests unitaires passent en < 1min
✅ Les tests d'intégration passent en < 3min
✅ Le rapport de couverture est généré
✅ L'artifact .jar est uploadé

Récapitulatif des commandes

========== Développement local ==========

Lancer l'app en mode dev
mvn spring-boot:run -Dspring-boot.run.profiles=dev

Lancer l'app en mode test
mvn spring-boot:run -Dspring-boot.run.profiles=test

========== Tests ==========

Tests unitaires uniquement (rapides, < 10s)
mvn clean test

Tests d'intégration uniquement
mvn clean verify -DskipUnitTests

Tous les tests
mvn clean verify

Tests avec rapport de couverture
mvn clean test jacoco:report

========== Couverture de code ==========

Générer le rapport JaCoCo

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

mvn jacoco:report

Ouvrir le rapport
open target/site/jacoco/index.html

Vérifier le seuil de couverture
mvn jacoco:check

========== Build ==========

Compiler sans tests
mvn clean package -DskipTests

Build complet
mvn clean install

Livrables attendus (réaliste pour 4h)

Must have (priorité absolue)

Configuration (30min) :

✅ 4 profils configurés : commun, dev, test, prod
✅ Application démarre avec chaque profil
✅ Variables d'environnement documentées

Tests unitaires (1h15) :

✅ ProductServiceTest complet (≥5 tests)
✅ UserServiceTest complet (≥5 tests)
✅ Utilisation correcte des mocks
✅ Tests paramétrés pour au moins 1 cas
✅ Tous les tests passent (mvn test)

Tests d'intégration (1h15) :

✅ ProductControllerIntegrationTest complet (≥6 tests)
✅ UserControllerIntegrationTest complet (≥5 tests)
✅ OrderControllerIntegrationTest complet (≥4 tests)
✅ Vérification des codes HTTP (200, 201, 400, 404, 409)
✅ Au moins 1 test de détection N+1
✅ Tous les tests passent (mvn verify)

Couverture + CI/CD (1h) :

✅ JaCoCo configuré avec seuil minimum 70%
✅ Workflow GitHub Actions complet (4 jobs)
✅ Séparation unit tests / integration tests
✅ Badges CI/CD dans le README
✅ Pipeline qui passe au vert sur GitHub

Nice to have (bonus si temps)

Protection de branche main configurée

2026/02/09 16:22 23/24 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Tests de contrat avec Spring Cloud Contract
SonarCloud intégré pour la qualité de code
Tests de charge basiques avec JMeter
Documentation Swagger/OpenAPI testée

Aide-mémoire : Différences clés
Aspect Test Unitaire Test d'Intégration
Vitesse ⚡ Très rapide (<10ms) � Plus lent (100-500ms)
Base de données ❌ Non (mocks) ✅ Oui (H2 en mémoire)
Contexte Spring ❌ Non ✅ Oui (toute l'app)
Annotations @ExtendWith(MockitoExtension.class) @SpringBootTest
Ce qu'on teste Logique métier isolée Flux complet de bout en bout
Quand ça échoue Bug dans la logique Bug d'intégration/config
Commande Maven mvn test mvn verify
Fichier de tests *Test.java *IntegrationTest.java

Bonnes pratiques à retenir

Tests unitaires

✅ Rapides : < 10ms par test
✅ Isolés : pas de dépendances externes (DB, réseau)
✅ AAA Pattern : Arrange, Act, Assert
✅ 1 test = 1 comportement : ne pas tester plusieurs choses
✅ Nommage explicite : methodName_WhenCondition_ShouldExpectedBehavior
✅ Mocks minimalistes : seulement les dépendances nécessaires

Tests d'intégration

✅ Réalistes : données de test cohérentes
✅ Nettoyage : @Transactional ou @BeforeEach avec deleteAll()
✅ Vérifications complètes : code HTTP + contenu + headers
✅ Performance : détecter les N+1 avec Hypersistence
✅ Cas d'erreur : tester les 400, 404, 409, 500

CI/CD

✅ Fail fast : tests unitaires avant intégration
✅ Parallélisation : jobs indépendants
✅ Artifacts : conserver les rapports et JARs
✅ Protection : branche main protégée
✅ Documentation : badges visibles

Ressources essentielles

Spring Boot Testing - Documentation officielle
JUnit 5 User Guide
Mockito Documentation

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.testing
https://junit.org/junit5/docs/current/user-guide/
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/Mockito.html

Last update: 2025/10/28 17:07 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

http://slamwiki2.kobject.net/ Printed on 2026/02/09 16:22

AssertJ Documentation
JaCoCo Maven Plugin
GitHub Actions - Documentation
Baeldung - Testing in Spring Boot

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

Last update: 2025/10/28 17:07

https://assertj.github.io/doc/
https://www.jacoco.org/jacoco/trunk/doc/maven.html
https://docs.github.com/en/actions
https://www.baeldung.com/spring-boot-testing
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761667650

	Séance 3 - Tests et CI/CD (4h)
	Objectifs pédagogiques
	Partie 0 : Point de départ (15min)
	Partie 1 : Configuration multi-environnements (30min)
	1.1 Stratégie de profils Spring
	Structure des fichiers
	application.properties (commun)
	application-dev.properties
	application-test.properties
	application-prod.properties

	1.2 Activation des profils

	Partie 2 : Tests Unitaires (1h15)
	2.1 Dépendances nécessaires (pom.xml)
	2.2 Premier test simple : ProductService
	2.3 Concepts clés
	2.4 Tests paramétrés (en plus)

	Partie 3 : Tests d'Intégration (1h15)
	3.1 Configuration de base
	3.2 Concepts clés
	3.3 Test avec détection N+1

	Partie 4 : Couverture de code avec JaCoCo (20min)
	4.1 Configuration Maven
	4.2 Commandes Maven
	4.3 Exclusion de certaines classes

	Partie 5 : GitHub Actions - Pipeline CI/CD complète (40min)
	5.1 Workflow complet
	5.2 Configuration pour séparer les tests
	5.3 Badges pour le README
	5.4 Protection de branche (optionnel)

	Récapitulatif des commandes
	Livrables attendus (réaliste pour 4h)
	Must have (priorité absolue)
	Nice to have (bonus si temps)

	Aide-mémoire : Différences clés
	Bonnes pratiques à retenir
	Tests unitaires
	Tests d'intégration
	CI/CD

	Ressources essentielles

