2026/02/02 00:42

1/24 3 - Tests et CI/CD

Séance 3 - Tests et CI/CD (4h)

Objectifs pédagogiques

Mesurer la couverture de code

Comprendre la différence entre tests unitaires et tests d'intégration
Ecrire des tests simples et efficaces avec les bonnes pratiques
Gérer les profils Spring (dev/test/prod)

Mettre en place une pipeline Cl compléte avec GitHub Actions

Partie 0 : Point de départ (15min)

Partie 1 : Configuration multi-environnements (30min)

1.1 Stratégie de profils Spring

_—

|

Structure des fichiers

src/main/resources/

F—— application.properties

F—— application-dev.properties
F—— application-test.properties
L application-prod.properties

application.properties (commun)

Configuration commune
Développement local
Tests automatisés

Production

Configuration commune a tous les profils

spring.application.name=ecommerce-api

server.port=8080

JPA commun

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

spring.jpa.open-in-view=false
spring.jpa.properties.hibernate.jdbc.time zone=UTC

Validation
spring.jackson.deserialization.fail-on-unknown-properties=true

application-dev.properties

Base H2 fichier pour le dev
spring.datasource.url=jdbc:h2:file:./data/ecommerce-dev
spring.datasource.username=sa
spring.datasource.password=

Console H2 activée
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

DDL auto pour en dev
spring.jpa.hibernate.ddl-auto=update

Logs verbeux

spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format sql=true
logging. level.com.ecommerce=DEBUG
logging.level.io.hypersistence.utils=DEBUG

application-test.properties

Base H2 en mémoire pour les tests
spring.datasource.url=jdbc:h2:mem:testdb;MODE=PostgreSQL;DB CLOSE DELAY=-1
spring.datasource.username=sa

spring.datasource.password=

Recréation du schéma a chaque test
spring.jpa.hibernate.ddl-auto=create-drop

Logs minimaux (sauf erreurs)
spring.jpa.show-sql=false
logging.level.com.ecommerce=INFO
logging.level.org.hibernate=WARN

Performance tests
spring.jpa.properties.hibernate.generate statistics=true

Désactivation fonctionnalités non nécessaires en test
spring.h2.console.enabled=false

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

2026/02/02 00:42 3/24 3 - Tests et CI/CD

application-prod.properties

Base PostgreSQL (exemple)
spring.datasource.url=${DATABASE URL}
spring.datasource.username=${DB USERNAME}
spring.datasource.password=${DB_PASSWORD}

JAMAIS de DDL auto en production
spring.jpa.hibernate.ddl-auto=validate

Logs minimaux
spring.jpa.show-sql=false
logging. level.com.ecommerce=INFO

Sécurité
spring.h2.console.enabled=false

1.2 Activation des profils

Dans IntelliJ : Run Configuration > Active profiles: dev

Ou via variable d'environnement
export SPRING PROFILES ACTIVE=dev

Via ligne de commande
mvn spring-boot:run -Dspring-boot.run.profiles=dev

Partie 2 : Tests Unitaires (1h15)

-

|

2.1 Dépendances nécessaires (pom.xml)

<dependencies>
<!-- Spring Boot Test (inclut JUnit 5, Mockito, Assert]) -->

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21

eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

<dependency>

<groupIld>org.

springframework.boot</groupld>

<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>

</dependency>
</dependencies>

2.2 Premier test simple : ProductService

package com.ecommerce.service;

import
import
import
import
import
import
import
import
import
import
import

import
import
import

import
import

com.ecommerce.
com.ecommerce
com.ecommerce.
com.ecommerce
com.ecommerce

domain.Product;

.domain.Category;

repository.ProductRepository;

.exception.ProductNotFoundException;
.exception.InsufficientStockException;

org.junit.jupiter.api.Test;
org.junit.jupiter.api.DisplayName;
org.junit.jupiter.api.extension.ExtendWith;
org.mockito.InjectMocks;

org.mockito.Mock;
org.mockito.junit.jupiter.MockitoExtension;

java.math.BigDecimal;
java.util.Optional;
java.util.UUID;

static org.assertj.core.api.Assertions.*;
static org.mockito.Mockito.*;

@ExtendWith(MockitoExtension.class)
@DisplayName("ProductService - Unit Tests")
class ProductServiceTest {

@Mock
private ProductRepository productRepository;

@InjectMocks
private ProductService productService;

@Test
@DisplayName("Should return product when it exists")
void getProduct WhenExists ShouldReturnProduct() {
// Given (Arrange)

UUID productId = UUID.randomUUID();

Category category = new Category("Electronics", "Devices");
Product expectedProduct = Product.builder()
.id(productId)

.name("iPhone")

.price(new BigDecimal("999.99"))
.stock(10)

.category(category)

Lbuild();

http://slamwiki2.kobject.net/

Printed on 2026/02/02 00:42

2026/02/02 00:42 5/24

3 - Tests et CI/CD

}

when (productRepository.findById(productId))
.thenReturn(Optional.of(expectedProduct));

// When (Act)
Product result = productService.getProduct(productId);

// Then (Assert)

assertThat(result).isNotNull();
assertThat(result.getName()).isEqualTo("iPhone");
assertThat(result.getPrice()).isEqualByComparingTo("999.99");
assertThat(result.getStock()).isEqualTo(10);
verify(productRepository, times(1l)).findById(productId);
verifyNoMoreInteractions(productRepository);

@Test
@isplayName("Should throw exception when product not found")
void getProduct WhenNotExists ShouldThrowException() {

}

// Given

UUID productId = UUID.randomUUID();

when (productRepository.findById(productId))
.thenReturn(Optional.empty());

// When & Then

assertThatThrownBy(() -> productService.getProduct(productId))
.isInstanceOf (ProductNotFoundException.class)
.hasMessageContaining(productId.toString());

verify(productRepository).findById(productId);

@Test
@isplayName("Should decrease stock when updating with negative quantity")
void updateStock WithNegativeQuantity ShouldDecreaseStock() {

}

// Given

UUID productId = UUID.randomUUID();

Product product = Product.builder()
.id(productId)
.name("Test Product")
.price(BigDecimal.TEN)
.stock(10)
.build();

when (productRepository.findById(productId))
.thenReturn(Optional.of(product));

when (productRepository.save(any(Product.class)))
.thenReturn(product);

// When
productService.updateStock(productId, -3);

// Then
assertThat (product.getStock()).isEqualTo(7);
verify(productRepository).save(product);

@Test
@isplayName("Should throw exception when insufficient stock")

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

void updateStock WithInsufficientStock ShouldThrowException() {

// Given

UUID productId = UUID.randomUUID();

Product product = Product.builder()
.id(productId)
.name("Test Product")
.price(BigDecimal.TEN)
.stock(5)
Lbuild();

when (productRepository.findById(productId))
.thenReturn(Optional.of(product));

// When & Then

assertThatThrownBy(() -> productService.updateStock(productId, -10))
.isInstanceOf(InsufficientStockException.class);

verify(productRepository, never()).save(any());

}

@Test
@DisplayName("Should increase stock when updating with positive quantity")
void updateStock WithPositiveQuantity ShouldIncreaseStock() {
// Given
UUID productId = UUID.randomUUID();
Product product = Product.builder()
.id(productId)
.name("Test Product")
.price(BigDecimal.TEN)
.stock(10)
Lbuild();
when (productRepository.findById(productId))
.thenReturn(Optional.of(product));
when (productRepository.save(any(Product.class)))
.thenReturn(product);

// When
productService.updateStock(productId, 5);

// Then
assertThat(product.getStock()).isEqualTo(15);
verify(productRepository).save(product);

2.3 Concepts clés

// @ock : Crée un faux objet (ne fait rien par défaut)
@Mock
private ProductRepository productRepository;

// @InjectMocks : Injecte automatiquement les mocks dans la classe testée
@InjectMocks
private ProductService productService;

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

2026/02/02 00:42 7/24 3 - Tests et CI/CD

// when(...).thenReturn(...) : Définit le comportement du mock
when (productRepository.findById(id)).thenReturn(Optional.of(product));

// verify(...) : Vérifie qu'une méthode a été appelée (et combien de fois)
verify(productRepository, times(1l)).save(any());
verify(productRepository, never()).delete(any());

// assertThat(...) : Vérifie le résultat (Assert] - plus lisible que assertEquals)
assertThat(result.getStock()).isEqualTo(7);

assertThat(result).isNotNull();

assertThat(list).hasSize(3);

// assertThatThrownBy : Vérifie qu'une exception est levée
assertThatThrownBy(() -> service.doSomething())
.isInstanceOf (MyException.class)
.hasMessage("Expected message");

2.4 Tests paramétrés (en plus)

import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.CsvSource;
import org.junit.jupiter.params.provider.ValueSource;

@ParameterizedTest
@DisplayName("Should validate price is positive")
@ValueSource(strings = {"-10.00", "-0.01", "0.00"})
void createProduct WithInvalidPrice ShouldThrowException(String price) {
// Given
CreateProductDto dto = new CreateProductDto();
dto.setName("Test");
dto.setPrice(new BigDecimal(price));
dto.setStock(10);

// When & Then
assertThatThrownBy(() -> productService.createProduct(dto))
.isInstanceOf (InvalidPriceException.class);

}

@ParameterizedTest
@isplayName("Should calculate correct total for different quantities")
@CsvSource ({
"1, 10.00, 10.00",
"2, 10.00, 20.00",
"5, 9.99, 49.95"
})
void calculateTotal WithDifferentQuantities ShouldReturnCorrectAmount (
int quantity,
String unitPrice,
String expectedTotal
) {
// Given
Product product = Product.builder()
.price(new BigDecimal(unitPrice))

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

Lbuild();

// When
BigDecimal total = productService.calculateTotal(product, quantity);

// Then
assertThat(total).isEqualByComparingTo(expectedTotal);

@ExtendWith (MockitoExtension.
@isplayName("UserService - Unit Tests"
UserServiceTest

@Mock
UserRepository userRepository

@Mock
OrderRepository orderRepository

@InjectMocks
UserService userService

@Test
@isplayName("Should create user with valid data"
void createUser WithValidData ShouldReturnUser
// Given
CreateUserDto dto CreateUserDto("John Doe",
"john@example.com"
User user = User.builder
.1id (UUID. randomUUID
.name (dto.getName
.email(dto.getEmail

.build
when (userRepository.existsByEmail (dto.getEmail .thenReturn(false
when (userRepository.save(any(User. .thenReturn(user
// When

User result userService.createUser(dto

// Then
assertThat(result).isNotNull
assertThat(result.getEmail .isEqualTo("john@example.com"

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

2026/02/02 00:42 9/24 3 - Tests et CI/CD

verify(userRepository).save(any(User.

// TODO: Implémenter les 4 autres tests

Partie 3 : Tests d'Intégration (1h15)

3.1 Configuration de base

package com.ecommerce.controller;

import com.ecommerce.domain.Product;

import com.ecommerce.domain.Category;

import com.ecommerce.repository.ProductRepository;

import com.ecommerce.repository.CategoryRepository;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.DisplayName;

import org.springframework.beans.factory.annotation.Autowired;
import
org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.http.MediaType;

import org.springframework.test.context.ActiveProfiles;

import org.springframework.test.web.servlet.MockMvc;

import org.springframework.transaction.annotation.Transactional;

import java.math.BigDecimal;

import static org.hamcrest.Matchers.*;

import static
org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;

import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;
import static org.springframework.test.web.servlet.result.MockMvcResultHandlers.*;

@SpringBootTest
@AutoConfigureMockMvc

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

@ActiveProfiles("test")

@Transactional // Rollback automatique apres chaque test
@isplayName("ProductController - Integration Tests")
class ProductControllerIntegrationTest {

@Autowired
private MockMvc mockMvc;

@Autowired
private ProductRepository productRepository;

@Autowired
private CategoryRepository categoryRepository;

private Category electronics;

@BeforeEach

void setUp() {
// Nettoyage (si @Transactional ne suffit pas)
productRepository.deleteAll();
categoryRepository.deleteAll();
// Données de test
electronics = categoryRepository.save(

new Category("Electronics", "Electronic devices")

)i

}

@Test
@isplayName("GET /products/{id} should return 200 when product exists")
void getProduct WhenExists ShouldReturn200() throws Exception {
// Given
Product product = productRepository.save(
Product.builder()
.name("iPhone 15")
.price(new BigDecimal("999.99"))
.stock(50)
.category(electronics)
.build()
)

// When & Then

mockMvc.perform(get("/products/{id}", product.getId()))
.andDo(print()) // Affiche la requéte/réponse (utile pour déboguer)
.andExpect(status().is0k())

.andExpect(content().contentType(MediaType.APPLICATION JSON))
.andExpect(jsonPath("$.id").value(product.getId().toString()))
.andExpect(jsonPath("$.name").value("iPhone 15"))
.andExpect(jsonPath("$.price").value(999.99))
.andExpect(jsonPath("$.stock").value(50))
.andExpect(jsonPath("$.category.name").value("Electronics"));

}

@Test

@DisplayName("GET /products/{id} should return 404 when product not found")
void getProduct WhenNotExists ShouldReturn404() throws Exception {
// When & Then

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

2026/02/02 00:42 11/24

3 - Tests et CI/CD

mockMvc.perform(get("/products/{id}",
"00000000-0000-0000-0000-000000000000"))
.andExpect(status().isNotFound())
.andExpect(jsonPath("$.message").exists());

}

@Test
@DisplayName("POST /products should return 201 with valid data")
void createProduct WithValidData ShouldReturn201() throws Exception {
// Given
String requestBody =
{

"name": "iPad Pro",
"price": 799.99,
"stock": 30,
"categoryId":

[*)
%S

}

""" formatted(electronics.getId());

// When & Then
mockMvc.perform(post("/products")
.contentType(MediaType.APPLICATION JSON)
.content(requestBody))
.andDo(print())
.andExpect(status().isCreated())
.andExpect (header().exists("Location"))
.andExpect(jsonPath("$.id") .exists())
.andExpect(jsonPath("$.name").value("iPad Pro"))
.andExpect(jsonPath("$.price").value(799.99))
.andExpect(jsonPath("$.stock").value(30));

}

@Test
@isplayName("POST /products should return 400 with invalid data")

void createProduct WithInvalidData ShouldReturn400() throws Exception {

// Given - prix négatif
String requestBody = """

{
"name": "Invalid Product",
"price": -10.00,
"stock": 10,
"categoryId": "S%s"
}

"' formatted(electronics.getId());

// When & Then
mockMvc.perform(post("/products")
.contentType(MediaType.APPLICATION JSON)
.content(requestBody))
.andExpect (status().isBadRequest())
.andExpect(jsonPath("$.errors").isArray());

}

@Test

@isplayName("PUT /products/{id}/stock should update stock correctly")
void updateStock WithValidQuantity ShouldReturn200() throws Exception {

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

// Given
Product product = productRepository.save(
Product.builder()
.name("Test Product")
.price(BigDecimal.TEN)
.stock(10)
.category(electronics)
.build()
I
String requestBody = """
{
"quantity": 5
}

non,
’

// When & Then
mockMvc.perform(put("/products/{id}/stock", product.getId())
.contentType (MediaType.APPLICATION JSON)
.content(requestBody))
.andExpect(status().is0k())
.andExpect(jsonPath("$.stock").value(15));

}

@Test
@DisplayName("GET /products should return paginated list")
void getProducts ShouldReturnPaginatedList() throws Exception {
// Given
productRepository.save(Product.builder()
.name("Product 1")
.price(BigDecimal.TEN)
.stock(10)
.category(electronics)
.build());
productRepository.save(Product.builder()
.name("Product 2")
.price(BigDecimal.value0f(20))
.stock(20)
.category(electronics)
.build());

// When & Then
mockMvc.perform(get("/products")

.param("page", "0")

.param("size", "10"))
.andExpect(status().is0k())
.andExpect(jsonPath("$.content").isArray())
.andExpect(jsonPath("$.content", hasSize(2)))
.andExpect(jsonPath("$.totalElements").value(2));

¥

@Test

@DisplayName("GET /products should filter by category")

void getProducts WithCategoryFilter ShouldReturnFilteredList() throws Exception

// Given

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

2026/02/02 00:42 13/24 3 - Tests et CI/CD

Category books = categoryRepository.save(new Category("Books", "Books
category"));
productRepository.save(Product.builder()
.name("iPhone")
.price(BigDecimal.value0f(999))
.stock(10)
.category(electronics)
.build());
productRepository.save(Product.builder()
.name("Java Book")
.price(BigDecimal.valueOf(50))
.stock(20)
.category(books)
.build());

// When & Then
mockMvc.perform(get("/products")

.param("categoryId", electronics.getId().toString()))
.andExpect(status().1is0k())
.andExpect(jsonPath("$.content", hasSize(1l)))
.andExpect(jsonPath("$.content[0].name").value("iPhone"));

3.2 Concepts clés

// @SpringBootTest : Lance toute 1'application Spring
@SpringBootTest

// @AutoConfigureMockMvc : Configure MockMvc pour simuler les requétes HTTP
@AutoConfigureMockMvc

// @ActiveProfiles("test") : Utilise application-test.properties
@ActiveProfiles("test")

// @Transactional : Rollback automatique aprés chaque test
@Transactional

// MockMvc : Simule des requétes HTTP sans démarrer le serveur
mockMvc.perform(get("/products/123"))
.andExpect(status().is0k())
.andExpect (jsonPath("$.name").value("iPhone"));

// jsonPath : Parcourt la réponse JSON avec des expressions

jsonPath("$.name") // Champ direct
jsonPath("$.category.name") // Objet imbriqué
jsonPath("$.items[0].name") // Premier élément d'un tableau
jsonPath("$.items", hasSize(3)) // Taille du tableau

3.3 Test avec détection N+1

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

import io.hypersistence.utils.jdbc.validator.SQLStatementCountValidator;
import static io.hypersistence.utils.jdbc.validator.SQLStatementCountValidator.*;

@Test
@isplayName("GET /users/{id}/orders should not trigger N+1 queries")
void getUserOrders ShouldNotTriggerNPlusOne() throws Exception {
// Given
User user = userRepository.save(new User("John", "john@example.com"));
for (int 1 =0; i <5; i++) {
Order order = new Order(user);
order.addItem(new OrderItem(productl, 1, productl.getPrice()));
order.addItem(new OrderItem(product2, 2, product2.getPrice()));
orderRepository.save(order);

}

// When

SQLStatementCountValidator.reset();

mockMvc.perform(get("/users/{id}/orders", user.getId()))
.andExpect (status().is0k())
.andExpect(jsonPath("$", hasSize(5)))
.andExpect(jsonPath("$[0].items", hasSize(2)));

// Then - Vérifier le nombre de requétes SQL
assertSelectCount(2); // 1 pour User + 1 pour Orders avec items (JOIN FETCH)

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

2026/02/02 00:42 15/24

3 - Tests et CI/CD

Partie 4 : Couverture de code avec JaCoCo (20min)

4.1 Configuration Maven

<!-- pom.xml -->
<build>
<plugins>
<!-- JaCoCo pour la couverture de code -->
<plugin>

<groupIld>org.jacoco</groupld>
<artifactId>jacoco-maven-plugin</artifactId>
<version>0.8.11l</version>

<executions>
<execution>
<goals>
<goal>prepare-agent</goal>
</goals>
</execution>
<execution>
<id>report</id>
<phase>test</phase>
<goals>
<goal>report</goal>
</goals>
</execution>
<execution>
<id>jacoco-check</id>
<goals>
<goal>check</goal>
</goals>
<configuration>
<rules>
<rule>
<element>PACKAGE</element>
<limits>
<limit>
<counter>LINE</counter>
<value>COVEREDRATIO</value>
<minimum>0.70</minimum>
</limit>
</limits>
</rule>
</rules>
</configuration>
</execution>
</executions>
</plugin>
<!l-- Surefire pour les tests unitaires -->
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

<version>3.2.2</version>
<configuration>
<includes>
<include>**/*Test.java</include>
</includes>
<excludes>
<exclude>**/*IntegrationTest. java</exclude>
</excludes>
</configuration>
</plugin>

<!-- Failsafe pour les tests d'intégration -->

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<version>3.2.2</version>

<configuration>
<includes>
<include>**/*IntegrationTest.java</include>
</includes>
</configuration>
<executions>
<execution>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>

</build>

4.2 Commandes Maven

Tests unitaires uniquement (rapides)
mvn clean test

Tests unitaires + rapport de couverture
mvn clean test jacoco:report

Tous les tests (unitaires + intégration)
mvn clean verify

Voir le rapport de couverture
open target/site/jacoco/index.html

4.3 Exclusion de certaines classes

<configuration>

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

2026/02/02 00:42 17/24 3 - Tests et CI/CD

<excludes>
<!-- Exclure les entités JPA -->
<exclude>**/domain/**</exclude>
<!-- Exclure les DTO0s -->
<exclude>**/dto/**</exclude>
<!-- Exclure la classe main -->
<exclude>**/EcommerceApplication.class</exclude>

</excludes>

</configuration>

Partie 5 : GitHub Actions - Pipeline CI/CD compléete (40min)

5.1 Workflow complet

Créer .github/workflows/ci.yml:

name: CI/CD Pipeline

on:
push:
branches: [main, develop]
pull request:
branches: [main, develop]

jobs:
Job 1 : Tests unitaires (rapides)
unit-tests:

name: Unit Tests
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4

- name: Set up JDK 21
uses: actions/setup-java@v4d
with:
java-version: '21'
distribution: 'temurin’
cache: maven

- name: Run unit tests

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

run: mvn clean test

- name: Upload test results
if: always()
uses: actions/upload-artifact@v3
with:
name: unit-test-results
path: target/surefire-reports/

Job 2 : Tests d'intégration (plus longs)
integration-tests:
name: Integration Tests
runs-on: ubuntu-latest
needs: unit-tests # Attend que les tests unitaires passent
steps:
- name: Checkout code
uses: actions/checkout@v4

- name: Set up JDK 21
uses: actions/setup-java@v4
with:
java-version: '21'
distribution: 'temurin'
cache: maven

- name: Run integration tests
run: mvn clean verify -DskipUnitTests

- name: Upload test results
if: always()
uses: actions/upload-artifact@v3
with:
name: integration-test-results
path: target/failsafe-reports/

Job 3 : Analyse de couverture
coverage:
name: Code Coverage
runs-on: ubuntu-latest
needs: integration-tests
steps:
- name: Checkout code
uses: actions/checkout@v4

- name: Set up JDK 21
uses: actions/setup-java@vé4
with:
java-version: '21'
distribution: 'temurin'
cache: maven

- name: Generate coverage report
run: mvn clean verify jacoco:report

- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

2026/02/02 00:42 19/24 3 - Tests et CI/CD

with:
files: ./target/site/jacoco/jacoco.xml
flags: unittests
name: codecov-umbrella
fail ci if error: false

- name: Upload JaCoCo report
uses: actions/upload-artifact@v3
with:
name: jacoco-report
path: target/site/jacoco/

Job 4 : Build (optionnel - pour vérifier que 1'app compile)
build:

name: Build Application

runs-on: ubuntu-latest

needs: coverage

steps:

- name: Checkout code
uses: actions/checkout@v4

- name: Set up JDK 21
uses: actions/setup-java@v4
with:
java-version: '21'
distribution: 'temurin’
cache: maven

- name: Build with Maven
run: mvn clean package -DskipTests

- name: Upload artifact
uses: actions/upload-artifact@v3
with:
name: ecommerce-api
path: target/*.jar

5.2 Configuration pour séparer les tests

<!-- pom.xml - Ajout de propriétés -->
<properties>
<skipUnitTests>false</skipUnitTests>
<skipIntegrationTests>false</skipIntegrationTests>
</properties>

<build>
<plugins>
<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-surefire-plugin</artifactId>

<configuration>
<skipTests>${skipUnitTests}</skipTests>

</configuration>

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

</plugin>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<configuration>

<skipTests>${skipIntegrationTests}</skipTests>

</configuration>

</plugin>

</plugins>
</build>

5.3 Badges pour le README

E-Commerce API

I[CI/CD](https://github.com/VOTRE-USERNAME/VOTRE-REPO/actions/workflows/ci.yml/badg
e.svg)

I [Coverage] (https://codecov.io/gh/VOTRE-USERNAME/VOTRE-REPO/branch/main/graph/badge
.svQg)

Description
API REST pour un systéme e-commerce avec Spring Boot 3.

Badges de statut

- **Build** : Statut de la compilation

- **Tests** : Résultat des tests automatisés

- **Coverage** : Pourcentage de code couvert par les tests

Commandes
" “bash

Tests unitaires uniquement
mvn test

Tests d'intégration uniquement
mvn verify -DskipUnitTests

Tous les tests
mvn verify

Rapport de couverture
mvn test jacoco:report

5.4 Protection de branche (optionnel)

Dans GitHub :

1. Settings - Branches - Add rule
2. Branch name pattern : main
3. Cocher:

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

2026/02/02 00:42 21/24 3 - Tests et CI/CD

o [] Require status checks to pass before merging

o [] Require branches to be up to date before merging

o Sélectionner : Unit Tests, Integration Tests, Code Coverage
4. Create

Récapitulatif des commandes

Lancer l'app en mode dev
mvn spring-boot:run -Dspring-boot.run.profiles=dev

Lancer 1'app en mode test
mvn spring-boot:run -Dspring-boot.run.profiles=test

Tests unitaires uniquement (rapides, < 10s)
mvn clean test

Tests d'intégration uniquement
mvn clean verify -DskipUnitTests

Tous les tests
mvn clean verify

Tests avec rapport de couverture
mvn clean test jacoco:report

Générer le rapport JaCoCo

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

mvn jacoco:report

Ouvrir le rapport
open target/site/jacoco/index.html

Vérifier le seuil de couverture
mvn jacoco:check

Compiler sans tests
mvn clean package -DskipTests

Build complet
mvn clean install

Livrables attendus

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

2026/02/02 00:42 23/24 3 - Tests et CI/CD

Aide-mémoire : Différences clés

Aspect Test Unitaire Test d'Intégration
Vitesse % Tres rapide (<10ms) [] Plus lent (100-500ms)
Base de données |[] Non (mocks)
Contexte Spring | Non

[] Oui (H2 en mémoire)
0 Oui (toute I'app)

Annotations @ExtendWith(MockitoExtension.class)|@SpringBootTest
Ce qu'on teste Logique métier isolée Flux complet de bout en bout
Quand ca échoue (Bug dans la logique Bug d'intégration/config

Commande Maven|mvn test
Fichier de tests |*Test.java

mvn verify
*IntegrationTest.java

Bonnes pratiques a retenir

Ressources essentielles

¢ Spring Boot Testing - Documentation officielle
¢ JUnit 5 User Guide

¢ Mockito Documentation

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.testing
https://junit.org/junit5/docs/current/user-guide/
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/Mockito.html

Last update: 2025/10/28 20:21 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

e Assert] Documentation

¢ JaCoCo Maven Plugin

¢ GitHub Actions - Documentation
¢ Baeldung - Testing in Spring Boot

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

Last update: 2025/10/28 20:21

http://slamwiki2.kobject.net/ Printed on 2026/02/02 00:42

https://assertj.github.io/doc/
https://www.jacoco.org/jacoco/trunk/doc/maven.html
https://docs.github.com/en/actions
https://www.baeldung.com/spring-boot-testing
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761679263

	Séance 3 - Tests et CI/CD (4h)
	Objectifs pédagogiques
	Partie 0 : Point de départ (15min)
	Partie 1 : Configuration multi-environnements (30min)
	1.1 Stratégie de profils Spring
	Structure des fichiers
	application.properties (commun)
	application-dev.properties
	application-test.properties
	application-prod.properties

	1.2 Activation des profils

	Partie 2 : Tests Unitaires (1h15)
	2.1 Dépendances nécessaires (pom.xml)
	2.2 Premier test simple : ProductService
	2.3 Concepts clés
	2.4 Tests paramétrés (en plus)

	Partie 3 : Tests d'Intégration (1h15)
	3.1 Configuration de base
	3.2 Concepts clés
	3.3 Test avec détection N+1

	Partie 4 : Couverture de code avec JaCoCo (20min)
	4.1 Configuration Maven
	4.2 Commandes Maven
	4.3 Exclusion de certaines classes

	Partie 5 : GitHub Actions - Pipeline CI/CD complète (40min)
	5.1 Workflow complet
	5.2 Configuration pour séparer les tests
	5.3 Badges pour le README
	5.4 Protection de branche (optionnel)

	Récapitulatif des commandes
	Livrables attendus
	A faire en priorité
	En +, Si vous avez le temps

	Aide-mémoire : Différences clés
	Bonnes pratiques à retenir
	Tests unitaires
	Tests d'intégration
	CI/CD

	Ressources essentielles

