
2026/01/29 23:14 1/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Séance 3 - Tests et CI/CD (4h)

Objectifs pédagogiques

Comprendre la différence entre tests unitaires et tests d'intégration
Écrire des tests simples et efficaces avec les bonnes pratiques
Gérer les profils Spring (dev/test/prod)
Mettre en place une pipeline CI complète avec GitHub Actions
Mesurer la couverture de code

Partie 0 : Point de départ (15min)

Point avancement TD2

Qui a terminé les associations Order/OrderItem/User ?
Qui a résolu des problèmes N+1 ?
Ceux qui ont fini peuvent commencer les tests, les autres finalisent le TD2

Partie 1 : Configuration multi-environnements (30min)

1.1 Stratégie de profils Spring

Objectif : Séparer les configurations selon l'environnement (dev, test, prod)

Profiles

La création de profiles permet de gérer des configurations différentes, et des fichiers de configuration
spécifiques à chaque profile.

Ajouter la section profiles suivante au fichier pom.xml

 <profiles>
 <profile>
 <id>dev</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <properties>
 <activeProfile>dev</activeProfile>
 </properties>
 </profile>
 <profile>
 <id>prod</id>

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

 <properties>
 <activeProfile>prod</activeProfile>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.postgresql</groupId>
 <artifactId>postgresql</artifactId>
 <scope>runtime</scope>
 </dependency>
 </dependencies>
 </profile>
 <profile>
 <id>test</id>
 <properties>
 <activeProfile>test</activeProfile>
 </properties>
 </profile>
 </profiles>

Structure des fichiers

src/main/resources/
├── application.properties # Configuration commune
├── application-dev.properties # Développement local
├── application-test.properties # Tests automatisés
└── application-prod.properties # Production

application.properties (commun)

Configuration commune à tous les profils
spring.application.name=ecommerce-api
server.port=8080

Récupération du profile Maven pour def du profile Spring
spring.profiles.active=@activeProfile@

JPA commun
spring.jpa.open-in-view=false
spring.jpa.properties.hibernate.jdbc.time_zone=UTC

Validation
spring.jackson.deserialization.fail-on-unknown-properties=true

application-dev.properties

Base H2 fichier pour le dev

2026/01/29 23:14 3/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

spring.datasource.url=jdbc:h2:file:./data/ecommerce-dev
spring.datasource.username=sa
spring.datasource.password=

Console H2 activée
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

DDL auto pour en dev
spring.jpa.hibernate.ddl-auto=update

Logs verbeux
spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format_sql=true
logging.level.com.ecommerce=DEBUG
logging.level.io.hypersistence.utils=DEBUG

application-test.properties

Base H2 en mémoire pour les tests
spring.datasource.url=jdbc:h2:mem:testdb;MODE=PostgreSQL;DB_CLOSE_DELAY=-1
spring.datasource.username=sa
spring.datasource.password=

Recréation du schéma à chaque test
spring.jpa.hibernate.ddl-auto=create-drop

Logs minimaux (sauf erreurs)
spring.jpa.show-sql=false
logging.level.com.ecommerce=INFO
logging.level.org.hibernate=WARN

Performance tests
spring.jpa.properties.hibernate.generate_statistics=true

Désactivation fonctionnalités non nécessaires en test
spring.h2.console.enabled=false

application-prod.properties

Base PostgreSQL (exemple)
spring.datasource.url=${DATABASE_URL}
spring.datasource.username=${DB_USERNAME}
spring.datasource.password=${DB_PASSWORD}

JAMAIS de DDL auto en production
spring.jpa.hibernate.ddl-auto=validate

Logs minimaux
spring.jpa.show-sql=false

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

logging.level.com.ecommerce=INFO

Sécurité
spring.h2.console.enabled=false

1.2 Activation des profils

Dans IntelliJ : Run Configuration > Active profiles: dev
Ou via variable d'environnement
export SPRING_PROFILES_ACTIVE=dev

Via ligne de commande
mvn spring-boot:run -Dspring-boot.run.profiles=dev

Avec profil maven
mvn spring-boot:run -P dev

Exercice 1 (15min) :

Créer les 4 fichiers de configuration1.
Tester le lancement avec le profil dev2.
Vérifier que la console H2 est accessible sur /h2-console3.
Relancer avec le profil test et constater les différences de logs4.

Partie 2 : Tests Unitaires (1h15)

Principe clé : Un test unitaire teste UNE classe isolée, sans base de données, très rapidement

2.1 Dépendances nécessaires (pom.xml)

<dependencies>
 <!-- Spring Boot Test (inclut JUnit 5, Mockito, AssertJ) -->
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

2.2 Premier test simple : ProductService

2026/01/29 23:14 5/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

package com.ecommerce.service;

import com.ecommerce.domain.Product;
import com.ecommerce.domain.Category;
import com.ecommerce.repository.ProductRepository;
import com.ecommerce.exception.ProductNotFoundException;
import com.ecommerce.exception.InsufficientStockException;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.DisplayName;
import org.junit.jupiter.api.extension.ExtendWith;
import org.mockito.InjectMocks;
import org.mockito.Mock;
import org.mockito.junit.jupiter.MockitoExtension;

import java.math.BigDecimal;
import java.util.Optional;
import java.util.UUID;

import static org.assertj.core.api.Assertions.*;
import static org.mockito.Mockito.*;

@ExtendWith(MockitoExtension.class)
@DisplayName("ProductService - Unit Tests")
class ProductServiceTest {

 @Mock
 private ProductRepository productRepository;

 @InjectMocks
 private ProductService productService;

 @Test
 @DisplayName("Should return product when it exists")
 void getProduct_WhenExists_ShouldReturnProduct() {
 // Given (Arrange)
 UUID productId = UUID.randomUUID();
 Category category = new Category("Electronics", "Devices");
 Product expectedProduct = Product.builder()
 .id(productId)
 .name("iPhone")
 .price(new BigDecimal("999.99"))
 .stock(10)
 .category(category)
 .build();
 when(productRepository.findById(productId))
 .thenReturn(Optional.of(expectedProduct));

 // When (Act)
 Product result = productService.getProduct(productId);

 // Then (Assert)
 assertThat(result).isNotNull();
 assertThat(result.getName()).isEqualTo("iPhone");
 assertThat(result.getPrice()).isEqualByComparingTo("999.99");
 assertThat(result.getStock()).isEqualTo(10);
 verify(productRepository, times(1)).findById(productId);

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

 verifyNoMoreInteractions(productRepository);
 }

 @Test
 @DisplayName("Should throw exception when product not found")
 void getProduct_WhenNotExists_ShouldThrowException() {
 // Given
 UUID productId = UUID.randomUUID();
 when(productRepository.findById(productId))
 .thenReturn(Optional.empty());

 // When & Then
 assertThatThrownBy(() -> productService.getProduct(productId))
 .isInstanceOf(ProductNotFoundException.class)
 .hasMessageContaining(productId.toString());
 verify(productRepository).findById(productId);
 }

 @Test
 @DisplayName("Should decrease stock when updating with negative quantity")
 void updateStock_WithNegativeQuantity_ShouldDecreaseStock() {
 // Given
 UUID productId = UUID.randomUUID();
 Product product = Product.builder()
 .id(productId)
 .name("Test Product")
 .price(BigDecimal.TEN)
 .stock(10)
 .build();
 when(productRepository.findById(productId))
 .thenReturn(Optional.of(product));
 when(productRepository.save(any(Product.class)))
 .thenReturn(product);

 // When
 productService.updateStock(productId, -3);

 // Then
 assertThat(product.getStock()).isEqualTo(7);
 verify(productRepository).save(product);
 }

 @Test
 @DisplayName("Should throw exception when insufficient stock")
 void updateStock_WithInsufficientStock_ShouldThrowException() {
 // Given
 UUID productId = UUID.randomUUID();
 Product product = Product.builder()
 .id(productId)
 .name("Test Product")
 .price(BigDecimal.TEN)
 .stock(5)
 .build();
 when(productRepository.findById(productId))
 .thenReturn(Optional.of(product));

2026/01/29 23:14 7/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 // When & Then
 assertThatThrownBy(() -> productService.updateStock(productId, -10))
 .isInstanceOf(InsufficientStockException.class);
 verify(productRepository, never()).save(any());
 }

 @Test
 @DisplayName("Should increase stock when updating with positive quantity")
 void updateStock_WithPositiveQuantity_ShouldIncreaseStock() {
 // Given
 UUID productId = UUID.randomUUID();
 Product product = Product.builder()
 .id(productId)
 .name("Test Product")
 .price(BigDecimal.TEN)
 .stock(10)
 .build();
 when(productRepository.findById(productId))
 .thenReturn(Optional.of(product));
 when(productRepository.save(any(Product.class)))
 .thenReturn(product);

 // When
 productService.updateStock(productId, 5);

 // Then
 assertThat(product.getStock()).isEqualTo(15);
 verify(productRepository).save(product);
 }
}

2.3 Concepts clés

// @Mock : Crée un faux objet (ne fait rien par défaut)
@Mock
private ProductRepository productRepository;

// @InjectMocks : Injecte automatiquement les mocks dans la classe testée
@InjectMocks
private ProductService productService;

// when(...).thenReturn(...) : Définit le comportement du mock
when(productRepository.findById(id)).thenReturn(Optional.of(product));

// verify(...) : Vérifie qu'une méthode a été appelée (et combien de fois)
verify(productRepository, times(1)).save(any());
verify(productRepository, never()).delete(any());

// assertThat(...) : Vérifie le résultat (AssertJ - plus lisible que assertEquals)
assertThat(result.getStock()).isEqualTo(7);
assertThat(result).isNotNull();
assertThat(list).hasSize(3);

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

// assertThatThrownBy : Vérifie qu'une exception est levée
assertThatThrownBy(() -> service.doSomething())
 .isInstanceOf(MyException.class)
 .hasMessage("Expected message");

2.4 Tests paramétrés (en plus)

import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.CsvSource;
import org.junit.jupiter.params.provider.ValueSource;

@ParameterizedTest
@DisplayName("Should validate price is positive")
@ValueSource(strings = {"-10.00", "-0.01", "0.00"})
void createProduct_WithInvalidPrice_ShouldThrowException(String price) {
 // Given
 CreateProductDto dto = new CreateProductDto();
 dto.setName("Test");
 dto.setPrice(new BigDecimal(price));
 dto.setStock(10);

 // When & Then
 assertThatThrownBy(() -> productService.createProduct(dto))
 .isInstanceOf(InvalidPriceException.class);
}

@ParameterizedTest
@DisplayName("Should calculate correct total for different quantities")
@CsvSource({
 "1, 10.00, 10.00",
 "2, 10.00, 20.00",
 "5, 9.99, 49.95"
})
void calculateTotal_WithDifferentQuantities_ShouldReturnCorrectAmount(
 int quantity,
 String unitPrice,
 String expectedTotal
) {
 // Given
 Product product = Product.builder()
 .price(new BigDecimal(unitPrice))
 .build();

 // When
 BigDecimal total = productService.calculateTotal(product, quantity);

 // Then
 assertThat(total).isEqualByComparingTo(expectedTotal);
}

Exercice 2 (45min) :

2026/01/29 23:14 9/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Créer UserServiceTest avec au moins 5 tests :

createUser_WithValidData_ShouldReturnUser1.
createUser_WithDuplicateEmail_ShouldThrowException2.
getUser_WhenExists_ShouldReturnUser3.
getUser_WhenNotExists_ShouldThrowException4.
getUserOrders_ShouldReturnOrderHistory5.

Template fourni :

@ExtendWith(MockitoExtension.class)
@DisplayName("UserService - Unit Tests")
class UserServiceTest {

 @Mock
 private UserRepository userRepository;

 @Mock
 private OrderRepository orderRepository;

 @InjectMocks
 private UserService userService;

 @Test
 @DisplayName("Should create user with valid data")
 void createUser_WithValidData_ShouldReturnUser() {
 // Given
 CreateUserDto dto = new CreateUserDto("John Doe",
"john@example.com");
 User user = User.builder()
 .id(UUID.randomUUID())
 .name(dto.getName())
 .email(dto.getEmail())
 .build();

when(userRepository.existsByEmail(dto.getEmail())).thenReturn(false);
 when(userRepository.save(any(User.class))).thenReturn(user);

 // When
 User result = userService.createUser(dto);

 // Then
 assertThat(result).isNotNull();
 assertThat(result.getEmail()).isEqualTo("john@example.com");
 verify(userRepository).save(any(User.class));
 }

 // TODO: Implémenter les 4 autres tests
}

Critères de validation :

✅ Tous les tests passent (mvn test)
✅ Utilisation correcte des mocks
✅ Pattern AAA (Arrange, Act, Assert) respecté
✅ Messages d'erreur explicites avec @DisplayName

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

Partie 3 : Tests d'Intégration (1h15)

Test d'intégration : Teste le fonctionnement complet de l'API (Controller → Service → Repository
→ DB)

3.1 Configuration de base

package com.ecommerce.controller;

import com.ecommerce.domain.Product;
import com.ecommerce.domain.Category;
import com.ecommerce.repository.ProductRepository;
import com.ecommerce.repository.CategoryRepository;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.DisplayName;
import org.springframework.beans.factory.annotation.Autowired;
import
org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.http.MediaType;
import org.springframework.test.context.ActiveProfiles;
import org.springframework.test.web.servlet.MockMvc;
import org.springframework.transaction.annotation.Transactional;

import java.math.BigDecimal;

import static org.hamcrest.Matchers.*;
import static
org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;
import static org.springframework.test.web.servlet.result.MockMvcResultHandlers.*;

@SpringBootTest
@AutoConfigureMockMvc
@ActiveProfiles("test")
@Transactional // Rollback automatique après chaque test
@DisplayName("ProductController - Integration Tests")
class ProductControllerIntegrationTest {

 @Autowired
 private MockMvc mockMvc;

 @Autowired
 private ProductRepository productRepository;

 @Autowired
 private CategoryRepository categoryRepository;

2026/01/29 23:14 11/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 private Category electronics;

 @BeforeEach
 void setUp() {
 // Nettoyage (si @Transactional ne suffit pas)
 productRepository.deleteAll();
 categoryRepository.deleteAll();
 // Données de test
 electronics = categoryRepository.save(
 new Category("Electronics", "Electronic devices")
);
 }

 @Test
 @DisplayName("GET /products/{id} should return 200 when product exists")
 void getProduct_WhenExists_ShouldReturn200() throws Exception {
 // Given
 Product product = productRepository.save(
 Product.builder()
 .name("iPhone 15")
 .price(new BigDecimal("999.99"))
 .stock(50)
 .category(electronics)
 .build()
);

 // When & Then
 mockMvc.perform(get("/products/{id}", product.getId()))
 .andDo(print()) // Affiche la requête/réponse (utile pour déboguer)
 .andExpect(status().isOk())
 .andExpect(content().contentType(MediaType.APPLICATION_JSON))
 .andExpect(jsonPath("$.id").value(product.getId().toString()))
 .andExpect(jsonPath("$.name").value("iPhone 15"))
 .andExpect(jsonPath("$.price").value(999.99))
 .andExpect(jsonPath("$.stock").value(50))
 .andExpect(jsonPath("$.category.name").value("Electronics"));
 }

 @Test
 @DisplayName("GET /products/{id} should return 404 when product not found")
 void getProduct_WhenNotExists_ShouldReturn404() throws Exception {
 // When & Then
 mockMvc.perform(get("/products/{id}",
"00000000-0000-0000-0000-000000000000"))
 .andExpect(status().isNotFound())
 .andExpect(jsonPath("$.message").exists());
 }

 @Test
 @DisplayName("POST /products should return 201 with valid data")
 void createProduct_WithValidData_ShouldReturn201() throws Exception {
 // Given
 String requestBody = """
 {
 "name": "iPad Pro",
 "price": 799.99,

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

 "stock": 30,
 "categoryId": "%s"
 }
 """.formatted(electronics.getId());

 // When & Then
 mockMvc.perform(post("/products")
 .contentType(MediaType.APPLICATION_JSON)
 .content(requestBody))
 .andDo(print())
 .andExpect(status().isCreated())
 .andExpect(header().exists("Location"))
 .andExpect(jsonPath("$.id").exists())
 .andExpect(jsonPath("$.name").value("iPad Pro"))
 .andExpect(jsonPath("$.price").value(799.99))
 .andExpect(jsonPath("$.stock").value(30));
 }

 @Test
 @DisplayName("POST /products should return 400 with invalid data")
 void createProduct_WithInvalidData_ShouldReturn400() throws Exception {
 // Given - prix négatif
 String requestBody = """
 {
 "name": "Invalid Product",
 "price": -10.00,
 "stock": 10,
 "categoryId": "%s"
 }
 """.formatted(electronics.getId());

 // When & Then
 mockMvc.perform(post("/products")
 .contentType(MediaType.APPLICATION_JSON)
 .content(requestBody))
 .andExpect(status().isBadRequest())
 .andExpect(jsonPath("$.errors").isArray());
 }

 @Test
 @DisplayName("PUT /products/{id}/stock should update stock correctly")
 void updateStock_WithValidQuantity_ShouldReturn200() throws Exception {
 // Given
 Product product = productRepository.save(
 Product.builder()
 .name("Test Product")
 .price(BigDecimal.TEN)
 .stock(10)
 .category(electronics)
 .build()
);

 String requestBody = """
 {
 "quantity": 5
 }

2026/01/29 23:14 13/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 """;

 // When & Then
 mockMvc.perform(put("/products/{id}/stock", product.getId())
 .contentType(MediaType.APPLICATION_JSON)
 .content(requestBody))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$.stock").value(15));
 }

 @Test
 @DisplayName("GET /products should return paginated list")
 void getProducts_ShouldReturnPaginatedList() throws Exception {
 // Given
 productRepository.save(Product.builder()
 .name("Product 1")
 .price(BigDecimal.TEN)
 .stock(10)
 .category(electronics)
 .build());
 productRepository.save(Product.builder()
 .name("Product 2")
 .price(BigDecimal.valueOf(20))
 .stock(20)
 .category(electronics)
 .build());

 // When & Then
 mockMvc.perform(get("/products")
 .param("page", "0")
 .param("size", "10"))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$.content").isArray())
 .andExpect(jsonPath("$.content", hasSize(2)))
 .andExpect(jsonPath("$.totalElements").value(2));
 }

 @Test
 @DisplayName("GET /products should filter by category")
 void getProducts_WithCategoryFilter_ShouldReturnFilteredList() throws Exception
{
 // Given
 Category books = categoryRepository.save(new Category("Books", "Books
category"));
 productRepository.save(Product.builder()
 .name("iPhone")
 .price(BigDecimal.valueOf(999))
 .stock(10)
 .category(electronics)
 .build());
 productRepository.save(Product.builder()
 .name("Java Book")
 .price(BigDecimal.valueOf(50))
 .stock(20)
 .category(books)
 .build());

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

 // When & Then
 mockMvc.perform(get("/products")
 .param("categoryId", electronics.getId().toString()))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$.content", hasSize(1)))
 .andExpect(jsonPath("$.content[0].name").value("iPhone"));
 }
}

3.2 Concepts clés

// @SpringBootTest : Lance toute l'application Spring
@SpringBootTest

// @AutoConfigureMockMvc : Configure MockMvc pour simuler les requêtes HTTP
@AutoConfigureMockMvc

// @ActiveProfiles("test") : Utilise application-test.properties
@ActiveProfiles("test")

// @Transactional : Rollback automatique après chaque test
@Transactional

// MockMvc : Simule des requêtes HTTP sans démarrer le serveur
mockMvc.perform(get("/products/123"))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$.name").value("iPhone"));

// jsonPath : Parcourt la réponse JSON avec des expressions
jsonPath("$.name") // Champ direct
jsonPath("$.category.name") // Objet imbriqué
jsonPath("$.items[0].name") // Premier élément d'un tableau
jsonPath("$.items", hasSize(3)) // Taille du tableau

3.3 Test avec détection N+1

import io.hypersistence.utils.jdbc.validator.SQLStatementCountValidator;
import static io.hypersistence.utils.jdbc.validator.SQLStatementCountValidator.*;

@Test
@DisplayName("GET /users/{id}/orders should not trigger N+1 queries")
void getUserOrders_ShouldNotTriggerNPlusOne() throws Exception {
 // Given
 User user = userRepository.save(new User("John", "john@example.com"));
 for (int i = 0; i < 5; i++) {
 Order order = new Order(user);
 order.addItem(new OrderItem(product1, 1, product1.getPrice()));
 order.addItem(new OrderItem(product2, 2, product2.getPrice()));
 orderRepository.save(order);
 }

2026/01/29 23:14 15/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 // When
 SQLStatementCountValidator.reset();
 mockMvc.perform(get("/users/{id}/orders", user.getId()))
 .andExpect(status().isOk())
 .andExpect(jsonPath("$", hasSize(5)))
 .andExpect(jsonPath("$[0].items", hasSize(2)));

 // Then - Vérifier le nombre de requêtes SQL
 assertSelectCount(2); // 1 pour User + 1 pour Orders avec items (JOIN FETCH)
}

Exercice 3 (1h) :

Créer UserControllerIntegrationTest et OrderControllerIntegrationTest avec :

UserController (30min) :

POST /users - Création valide → 2011.
POST /users - Email déjà utilisé → 409 Conflict2.
GET /users/{id} - Utilisateur existant → 2003.
GET /users/{id} - Utilisateur inexistant → 4044.
GET /users/{id}/recommendations - Retourne des produits → 2005.

OrderController (30min) :

POST /orders - Création valide → 2011.
POST /orders - Stock insuffisant → 4002.
GET /orders/{id} - Commande existante → 2003.
GET /users/{userId}/orders - Historique → 2004.
Bonus : Test N+1 sur l'historique des commandes5.

Critères de validation :

✅ Tous les tests passent (mvn verify)
✅ @BeforeEach pour préparer les données
✅ Vérification des codes HTTP corrects
✅ Vérification du contenu JSON retourné
✅ Au moins 1 test de performance (N+1)

Partie 4 : Couverture de code avec JaCoCo (20min)

4.1 Configuration Maven

<!-- pom.xml -->
<build>
 <plugins>
 <!-- JaCoCo pour la couverture de code -->
 <plugin>
 <groupId>org.jacoco</groupId>
 <artifactId>jacoco-maven-plugin</artifactId>

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

 <version>0.8.11</version>
 <executions>
 <execution>
 <goals>
 <goal>prepare-agent</goal>
 </goals>
 </execution>
 <execution>
 <id>report</id>
 <phase>test</phase>
 <goals>
 <goal>report</goal>
 </goals>
 </execution>
 <execution>
 <id>jacoco-check</id>
 <goals>
 <goal>check</goal>
 </goals>
 <configuration>
 <rules>
 <rule>
 <element>PACKAGE</element>
 <limits>
 <limit>
 <counter>LINE</counter>
 <value>COVEREDRATIO</value>
 <minimum>0.70</minimum>
 </limit>
 </limits>
 </rule>
 </rules>
 </configuration>
 </execution>
 </executions>
 </plugin>

 <!-- Surefire pour les tests unitaires -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>3.2.2</version>
 <configuration>
 <includes>
 <include>**/*Test.java</include>
 </includes>
 <excludes>
 <exclude>**/*IntegrationTest.java</exclude>
 </excludes>
 </configuration>
 </plugin>

 <!-- Failsafe pour les tests d'intégration -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>

2026/01/29 23:14 17/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 <version>3.2.2</version>
 <configuration>
 <includes>
 <include>**/*IntegrationTest.java</include>
 </includes>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

4.2 Commandes Maven

Tests unitaires uniquement (rapides)
mvn clean test

Tests unitaires + rapport de couverture
mvn clean test jacoco:report

Tous les tests (unitaires + intégration)
mvn clean verify

Voir le rapport de couverture
open target/site/jacoco/index.html

4.3 Exclusion de certaines classes

<configuration>
 <excludes>
 <!-- Exclure les entités JPA -->
 <exclude>**/domain/**</exclude>
 <!-- Exclure les DTOs -->
 <exclude>**/dto/**</exclude>
 <!-- Exclure la classe main -->
 <exclude>**/EcommerceApplication.class</exclude>
 </excludes>
</configuration>

Exercice 4 (10min) :

Ajouter la configuration JaCoCo dans pom.xml1.

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

Lancer mvn clean test jacoco:report2.
Ouvrir target/site/jacoco/index.html dans un navigateur3.
Identifier les classes avec une couverture < 70%4.
Ajouter des tests pour améliorer la couverture5.

Partie 5 : GitHub Actions - Pipeline CI/CD complète (40min)

5.1 Workflow complet

Créer .github/workflows/ci.yml :

name: CI/CD Pipeline

on:
 push:
 branches: [main, develop]
 pull_request:
 branches: [main, develop]

jobs:
 # Job 1 : Tests unitaires (rapides)
 unit-tests:
 name: Unit Tests
 runs-on: ubuntu-latest
 steps:
 - name: Checkout code
 uses: actions/checkout@v4

 - name: Set up JDK 21
 uses: actions/setup-java@v4
 with:
 java-version: '21'
 distribution: 'temurin'
 cache: maven

 - name: Run unit tests
 run: mvn clean test -P test

 - name: Upload test results
 if: always()
 uses: actions/upload-artifact@v3
 with:
 name: unit-test-results
 path: target/surefire-reports/

 # Job 2 : Tests d'intégration (plus longs)
 integration-tests:
 name: Integration Tests
 runs-on: ubuntu-latest
 needs: unit-tests # Attend que les tests unitaires passent
 steps:

2026/01/29 23:14 19/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 - name: Checkout code
 uses: actions/checkout@v4

 - name: Set up JDK 21
 uses: actions/setup-java@v4
 with:
 java-version: '21'
 distribution: 'temurin'
 cache: maven

 - name: Run integration tests
 run: mvn clean verify -P test -DskipUnitTests

 - name: Upload test results
 if: always()
 uses: actions/upload-artifact@v3
 with:
 name: integration-test-results
 path: target/failsafe-reports/

 # Job 3 : Analyse de couverture
 coverage:
 name: Code Coverage
 runs-on: ubuntu-latest
 needs: integration-tests
 steps:
 - name: Checkout code
 uses: actions/checkout@v4

 - name: Set up JDK 21
 uses: actions/setup-java@v4
 with:
 java-version: '21'
 distribution: 'temurin'
 cache: maven

 - name: Generate coverage report
 run: mvn clean verify jacoco:report -P test

 - name: Upload coverage to Codecov
 uses: codecov/codecov-action@v3
 with:
 files: ./target/site/jacoco/jacoco.xml
 flags: unittests
 name: codecov-umbrella
 fail_ci_if_error: false

 - name: Upload JaCoCo report
 uses: actions/upload-artifact@v3
 with:
 name: jacoco-report
 path: target/site/jacoco/

 # Job 4 : Build (optionnel - pour vérifier que l'app compile)
 build:
 name: Build Application

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

 runs-on: ubuntu-latest
 needs: coverage
 steps:
 - name: Checkout code
 uses: actions/checkout@v4

 - name: Set up JDK 21
 uses: actions/setup-java@v4
 with:
 java-version: '21'
 distribution: 'temurin'
 cache: maven

 - name: Build with Maven
 run: mvn clean package -P prod -DskipTests

 - name: Upload artifact
 uses: actions/upload-artifact@v3
 with:
 name: ecommerce-api
 path: target/*.jar

5.2 Configuration pour séparer les tests

<!-- pom.xml - Ajout de propriétés -->
<properties>
 <skipUnitTests>false</skipUnitTests>
 <skipIntegrationTests>false</skipIntegrationTests>
</properties>

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <configuration>
 <skipTests>${skipUnitTests}</skipTests>
 </configuration>
 </plugin>

 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <configuration>
 <skipTests>${skipIntegrationTests}</skipTests>
 </configuration>
 </plugin>
 </plugins>
</build>

2026/01/29 23:14 21/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

5.3 Badges pour le README

E-Commerce API

![CI/CD](https://github.com/VOTRE-USERNAME/VOTRE-REPO/actions/workflows/ci.yml/badg
e.svg)
![Coverage](https://codecov.io/gh/VOTRE-USERNAME/VOTRE-REPO/branch/main/graph/badge
.svg)

Description
API REST pour un système e-commerce avec Spring Boot 3.

Badges de statut
- **Build** : Statut de la compilation
- **Tests** : Résultat des tests automatisés
- **Coverage** : Pourcentage de code couvert par les tests

Commandes

```bash
# Tests unitaires uniquement
mvn test

# Tests d'intégration uniquement
mvn verify -DskipUnitTests

# Tous les tests
mvn verify

# Rapport de couverture
mvn test jacoco:report
```

5.4 Protection de branche (optionnel)

Dans GitHub :

Settings → Branches → Add rule1.
Branch name pattern : main2.
Cocher :3.

✅ Require status checks to pass before merging
✅ Require branches to be up to date before merging
Sélectionner : Unit Tests, Integration Tests, Code Coverage

Create4.

Exercice 5 (30min) :

Créer le fichier .github/workflows/ci.yml1.
Commit et push sur GitHub2.
Vérifier dans l'onglet “Actions” que les 4 jobs s'exécutent3.
Ajouter les badges dans README.md4.

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

(Bonus) Configurer la protection de branche main5.
(Bonus) Créer une PR et vérifier que les tests sont obligatoires6.

Vérifications :

✅ Les tests unitaires passent en < 1min
✅ Les tests d'intégration passent en < 3min
✅ Le rapport de couverture est généré
✅ L'artifact .jar est uploadé

Récapitulatif des commandes

========== Développement local ==========

Lancer l'app en mode dev
mvn spring-boot:run -Dspring-boot.run.profiles=dev

Lancer l'app en mode test
mvn spring-boot:run -Dspring-boot.run.profiles=test

mvn spring-boot:run -P test

========== Tests ==========

Tests unitaires uniquement (rapides, < 10s)
mvn clean test

Tests d'intégration uniquement
mvn clean verify -DskipUnitTests

Tous les tests
mvn clean verify

Tests avec rapport de couverture
mvn clean test jacoco:report

========== Couverture de code ==========

Générer le rapport JaCoCo
mvn jacoco:report

Ouvrir le rapport
open target/site/jacoco/index.html

Vérifier le seuil de couverture
mvn jacoco:check

========== Build ==========

2026/01/29 23:14 23/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Compiler sans tests
mvn clean package -DskipTests

Build complet
mvn clean install

Livrables attendus

A faire en priorité

Configuration (30min) :

4 profils configurés : commun, dev, test, prod
Application démarre avec chaque profil
Variables d'environnement documentées

Tests unitaires (1h15) :

ProductServiceTest complet (≥5 tests)
UserServiceTest complet (≥5 tests)
Utilisation correcte des mocks
Tests paramétrés pour au moins 1 cas
Tous les tests passent (mvn test)

Tests d'intégration (1h15) :

ProductControllerIntegrationTest complet (≥6 tests)
UserControllerIntegrationTest complet (≥5 tests)
OrderControllerIntegrationTest complet (≥4 tests)
Vérification des codes HTTP (200, 201, 400, 404, 409)
Au moins 1 test de détection N+1
Tous les tests passent (mvn verify)

Couverture + CI/CD (1h) :

JaCoCo configuré avec seuil minimum 70%
Workflow GitHub Actions complet (4 jobs)
Séparation unit tests / integration tests
Badges CI/CD dans le README
Pipeline qui passe au vert sur GitHub

En +, Si vous avez le temps

Protection de branche main configurée
Tests de contrat avec Spring Cloud Contract
SonarCloud intégré pour la qualité de code
Tests de charge basiques avec JMeter
Documentation Swagger/OpenAPI testée

Aide-mémoire : Différences clés

Last update: 2025/10/29 01:12 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

Aspect Test Unitaire Test d'Intégration
Vitesse Très rapide (<10ms) Plus lent (100-500ms)
Base de données ❌ Non (mocks) ✅ Oui (H2 en mémoire)
Contexte Spring ❌ Non ✅ Oui (toute l'app)
Annotations @ExtendWith(MockitoExtension.class) @SpringBootTest
Ce qu'on teste Logique métier isolée Flux complet de bout en bout
Quand ça échoue Bug dans la logique Bug d'intégration/config
Commande Maven mvn test mvn verify
Fichier de tests *Test.java *IntegrationTest.java

Bonnes pratiques à retenir

Tests unitaires

Rapides : < 10ms par test
Isolés : pas de dépendances externes (DB, réseau)
AAA Pattern : Arrange, Act, Assert
1 test = 1 comportement : ne pas tester plusieurs choses
Nommage explicite : methodName_WhenCondition_ShouldExpectedBehavior
Mocks minimalistes : seulement les dépendances nécessaires

Tests d'intégration

Réalistes : données de test cohérentes
Nettoyage : @Transactional ou @BeforeEach avec deleteAll()
Vérifications complètes : code HTTP + contenu + headers
Performance : détecter les N+1 avec Hypersistence
Cas d'erreur : tester les 400, 404, 409, 500

CI/CD

Fail fast : tests unitaires avant intégration
Parallélisation : jobs indépendants
Artifacts : conserver les rapports et JARs
Protection : branche main protégée
Documentation : badges visibles

Ressources essentielles

Spring Boot Testing - Documentation officielle
JUnit 5 User Guide
Mockito Documentation
AssertJ Documentation
JaCoCo Maven Plugin
GitHub Actions - Documentation
Baeldung - Testing in Spring Boot

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.testing
https://junit.org/junit5/docs/current/user-guide/
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/Mockito.html
https://assertj.github.io/doc/
https://www.jacoco.org/jacoco/trunk/doc/maven.html
https://docs.github.com/en/actions
https://www.baeldung.com/spring-boot-testing

2026/01/29 23:14 25/25 3 - Tests et CI/CD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

Last update: 2025/10/29 01:12

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761696726

	Séance 3 - Tests et CI/CD (4h)
	Objectifs pédagogiques
	Partie 0 : Point de départ (15min)
	Partie 1 : Configuration multi-environnements (30min)
	1.1 Stratégie de profils Spring
	Profiles
	Structure des fichiers
	application.properties (commun)
	application-dev.properties
	application-test.properties
	application-prod.properties

	1.2 Activation des profils

	Partie 2 : Tests Unitaires (1h15)
	2.1 Dépendances nécessaires (pom.xml)
	2.2 Premier test simple : ProductService
	2.3 Concepts clés
	2.4 Tests paramétrés (en plus)

	Partie 3 : Tests d'Intégration (1h15)
	3.1 Configuration de base
	3.2 Concepts clés
	3.3 Test avec détection N+1

	Partie 4 : Couverture de code avec JaCoCo (20min)
	4.1 Configuration Maven
	4.2 Commandes Maven
	4.3 Exclusion de certaines classes

	Partie 5 : GitHub Actions - Pipeline CI/CD complète (40min)
	5.1 Workflow complet
	5.2 Configuration pour séparer les tests
	5.3 Badges pour le README
	5.4 Protection de branche (optionnel)

	Récapitulatif des commandes
	Livrables attendus
	A faire en priorité
	En +, Si vous avez le temps

	Aide-mémoire : Différences clés
	Bonnes pratiques à retenir
	Tests unitaires
	Tests d'intégration
	CI/CD

	Ressources essentielles

