2026/01/29 23:14 1/25 3 - Tests et CI/CD

3 - Tests et CI/CD

Objectifs pédagogiques

Comprendre la différence entre tests unitaires et tests d'intégration
Ecrire des tests simples et efficaces avec les bonnes pratiques
Gérer les profils Spring (dev/test/prod)

Mettre en place une pipeline Cl compléte avec GitHub Actions
Mesurer la couverture de code

Partie 0 : Point de départ (15min)

Partie 1 : Configuration multi-environnements (30min)

1.1 Stratégie de profils Spring

_—

|

Profiles

La création de profiles permet de gérer des configurations différentes, et des fichiers de configuration
spécifiques a chaque profile.

Ajouter la section profiles suivante au fichier pom.xml

<profiles>
<profile>
<id>dev</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<properties>
<activeProfile>dev</activeProfile>
</properties>
</profile>
<profile>
<id>prod</id>

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

<properties>
<activeProfile>prod</activeProfile>
</properties>
<dependencies>
<dependency>
<groupld>org.postgresql</groupIld>
<artifactId>postgresqgl</artifactId>
<scope>runtime</scope>
</dependency>
</dependencies>
</profile>
<profile>
<id>test</id>
<properties>
<activeProfile>test</activeProfile>
</properties>
</profile>
</profiles>

Structure des fichiers

src/main/resources/

F—— application.properties # Configuration commune
F—— application-dev.properties # Développement local
F—— application-test.properties # Tests automatisés

L application-prod.properties # Production

application.properties (commun)

Y

Configuration commune a tous les profils
spring.application.name=ecommerce-api
server.port=8080

Récupération du profile Maven pour def du profile Spring
spring.profiles.active=@activeProfile@

JPA commun
spring.jpa.open-in-view=false
spring.jpa.properties.hibernate.jdbc.time zone=UTC

Validation
spring.jackson.deserialization.fail-on-unknown-properties=true

application-dev.properties

Base H2 fichier pour le dev

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

2026/01/29 23:14 3/25 3 - Tests et CI/CD

spring.datasource.url=jdbc:h2:file:./data/ecommerce-dev
spring.datasource.username=sa
spring.datasource.password=

Console H2 activée
spring.h2.console.enabled=true
spring.h2.console.path=/h2-console

DDL auto pour en dev
spring.jpa.hibernate.ddl-auto=update

Logs verbeux

spring.jpa.show-sql=true
spring.jpa.properties.hibernate.format sql=true
logging. level.com.ecommerce=DEBUG
logging.level.io.hypersistence.utils=DEBUG

application-test.properties

Base H2 en mémoire pour les tests
spring.datasource.url=jdbc:h2:mem:testdb;MODE=PostgreSQL;DB CLOSE DELAY=-1
spring.datasource.username=sa

spring.datasource.password=

Recréation du schéma a chaque test
spring.jpa.hibernate.ddl-auto=create-drop

Logs minimaux (sauf erreurs)
spring.jpa.show-sql=false
logging. level.com.ecommerce=INFO
logging.level.org.hibernate=WARN

Performance tests
spring.jpa.properties.hibernate.generate statistics=true

Désactivation fonctionnalités non nécessaires en test
spring.h2.console.enabled=false

application-prod.properties

Base PostgreSQL (exemple)
spring.datasource.url=${DATABASE URL}
spring.datasource.username=${DB USERNAME}
spring.datasource.password=${DB PASSWORD}

JAMAIS de DDL auto en production
spring.jpa.hibernate.ddl-auto=validate

Logs minimaux
spring.jpa.show-sql=false

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

logging.level.com.ecommerce=INFO

Sécurité
spring.h2.console.enabled=false

1.2 Activation des profils

Dans IntelliJ : Run Configuration > Active profiles: dev
Ou via variable d'environnement
export SPRING PROFILES ACTIVE=dev

Via ligne de commande
mvn spring-boot:run -Dspring-boot.run.profiles=dev

Avec profil maven
mvn spring-boot:run -P dev

Partie 2 : Tests Unitaires (1hl5)

-~

1

2.1 Dépendances nécessaires (pom.xml)

<dependencies>
<!l-- Spring Boot Test (inclut JUnit 5, Mockito, Assertl]) -->
<dependency>
<groupId>org.springframework.boot</groupIld>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>

2.2 Premier test simple : ProductService

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

2026/01/29 23:14 5/25

3 - Tests et CI/CD

package com.ecommerce.service;

import
import
import
import
import
import
import
import
import
import
import

import
import
import

import
import

com.ecommerce.domain.Product;
com.ecommerce.domain.Category;

com.ecommerce. repository.ProductRepository;
com.ecommerce.exception.ProductNotFoundException;
com.ecommerce.exception.InsufficientStockException;
org.junit.jupiter.api.Test;
org.junit.jupiter.api.DisplayName;
org.junit.jupiter.api.extension.ExtendWith;
org.mockito.InjectMocks;

org.mockito.Mock;
org.mockito.junit.jupiter.MockitoExtension;

java.math.BigDecimal;
java.util.Optional;
java.util.UUID;

static org.assertj.core.api.Assertions.*;
static org.mockito.Mockito.*;

@ExtendWith(MockitoExtension.class)
@isplayName("ProductService - Unit Tests")
class ProductServiceTest {

@Mock
private ProductRepository productRepository;

@InjectMocks
private ProductService productService;

@Test
@DisplayName("Should return product when it exists")
void getProduct WhenExists ShouldReturnProduct() {

// Given (Arrange)
UUID productId = UUID.randomUUID();

Category category = new Category("Electronics", "Devices");
Product expectedProduct = Product.builder()
.id(productId)

.name("iPhone")
.price(new BigDecimal("999.99"))
.stock(10)
.category(category)
.build();

when (productRepository.findById(productId))
.thenReturn(Optional.of (expectedProduct));

// When (Act)
Product result = productService.getProduct(productId);

// Then (Assert)
assertThat(result).isNotNull();
assertThat(result.getName()).isEqualTo("iPhone");

assertThat(result.getPrice()).isEqualByComparingTo("999.99");

assertThat(result.getStock()).isEqualTo(10);
verify(productRepository, times(1l)).findById(productId);

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

verifyNoMoreInteractions(productRepository);

}

@Test
@isplayName("Should throw exception when product not found")
void getProduct WhenNotExists ShouldThrowException() {
// Given
UUID productId = UUID.randomUUID();
when (productRepository.findById(productId))
.thenReturn(Optional.empty());

// When & Then

assertThatThrownBy(() -> productService.getProduct(productId))
.isInstanceOf (ProductNotFoundException.class)
.hasMessageContaining(productId.toString());

verify(productRepository).findById(productId);

}

@Test

@DisplayName("Should decrease stock when updating with negative quantity")

void updateStock WithNegativeQuantity ShouldDecreaseStock() {

// Given

UUID productId = UUID.randomUUID();

Product product = Product.builder()
.id(productId)
.name("Test Product")
.price(BigDecimal.TEN)
.stock(10)
Lbuild();

when (productRepository.findById(productId))
.thenReturn(Optional.of(product));

when (productRepository.save(any(Product.class)))
.thenReturn(product);

// When
productService.updateStock(productId, -3);

// Then
assertThat(product.getStock()).isEqualTo(7);
verify(productRepository).save(product);

}

@Test
@isplayName("Should throw exception when insufficient stock")
void updateStock WithInsufficientStock ShouldThrowException() {
// Given
UUID productId = UUID.randomUUID();
Product product = Product.builder()
.id(productId)
.name("Test Product")
.price(BigDecimal.TEN)
.stock(5)
Lbuild();
when (productRepository. findById(productId))
.thenReturn(Optional.of (product));

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

2026/01/29 23:14 7/25 3 - Tests et CI/CD

// When & Then

assertThatThrownBy(() -> productService.updateStock(productId, -10))
.isInstanceOf (InsufficientStockException.class);

verify(productRepository, never()).save(any());

}

@Test
@isplayName("Should increase stock when updating with positive quantity")
void updateStock WithPositiveQuantity ShouldIncreaseStock() {
// Given
UUID productId = UUID.randomUUID();
Product product = Product.builder()
.id(productId)
.name("Test Product")
.price(BigDecimal.TEN)
.stock(10)
.build();
when (productRepository.findById(productId))
.thenReturn(Optional.of(product));
when (productRepository.save(any(Product.class)))
.thenReturn(product);

// When
productService.updateStock(productld, 5);

// Then
assertThat(product.getStock()).isEqualTo(15);
verify(productRepository).save(product);

2.3 Concepts clés

// @ExtendWith(MockitoExtension.class) : crée les Mocks et les injecte avant chaque
test

// @Mock : Crée un faux objet (ne fait rien par défaut)
@Mock
private ProductRepository productRepository;

// @InjectMocks : Injecte automatiquement les mocks dans la classe testée
@InjectMocks
private ProductService productService;

// when(...).thenReturn(...) : Définit le comportement du mock
when (productRepository.findById(id)).thenReturn(Optional.of(product));

// verify(...) : Vérifie qu'une méthode a été appelée (et combien de fois)
verify(productRepository, times(1l)).save(any());
verify(productRepository, never()).delete(any());

// assertThat(...) : Vérifie le résultat (Assert] - plus lisible que assertEquals)
assertThat(result.getStock()).isEqualTo(7);

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

assertThat(result).isNotNull();
assertThat(list).hasSize(3);

// assertThatThrownBy : Vérifie qu'une exception est levée
assertThatThrownBy(() -> service.doSomething())
.isInstanceOf (MyException.class)
.hasMessage("Expected message");

2.4 Tests paramétrés (en plus)

import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.CsvSource;
import org.junit.jupiter.params.provider.ValueSource;

@ParameterizedTest
@isplayName("Should validate price is positive")
@ValueSource(strings = {"-10.00", "-0.01", "0.00"})
void createProduct WithInvalidPrice ShouldThrowException(String price) {
// Given
CreateProductDto dto = new CreateProductDto();
dto.setName("Test");
dto.setPrice(new BigDecimal(price));
dto.setStock(10);

// When & Then
assertThatThrownBy(() -> productService.createProduct(dto))
.isInstanceOf (InvalidPriceException.class);

}

@ParameterizedTest
@isplayName("Should calculate correct total for different quantities")
@CsvSource({
"1, 10.00, 10.00",
"2, 10.00, 20.00",
"5, 9.99, 49.95"
})
void calculateTotal WithDifferentQuantities ShouldReturnCorrectAmount (
int quantity,
String unitPrice,
String expectedTotal

// Given

Product product = Product.builder()
.price(new BigDecimal(unitPrice))
.build();

// When
BigDecimal total = productService.calculateTotal(product, quantity);

// Then
assertThat(total).isEqualByComparingTo(expectedTotal);

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

2026/01/29 23:14 9/25 3 - Tests et CI/CD

@ExtendWith (MockitoExtension.
@isplayName("UserService - Unit Tests"
UserServiceTest

@Mock
UserRepository userRepository

@Mock
OrderRepository orderRepository

@InjectMocks
UserService userService

@Test
@isplayName("Should create user with valid data"
void createUser WithValidData ShouldReturnUser
// Given
CreateUserDto dto CreateUserDto("John Doe",
"john@example.com"
User user = User.builder
.1d(UUID.randomUUID
.name (dto.getName
.email(dto.getEmail
.build

when (userRepository.existsByEmail (dto.getEmail .thenReturn(false
when(userRepository.save(any(User. .thenReturn(user

// When
User result userService.createUser(dto

// Then

assertThat(result).isNotNull

assertThat(result.getEmail .isEqualTo("john@example.com"
verify(userRepository).save(any(User.

// TODO: Implémenter les 4 autres tests

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

Partie 3 : Tests d'Intégration (1h15)

3.1 Configuration de base

package com.ecommerce.controller;

import com.ecommerce.domain.Product;

import com.ecommerce.domain.Category;

import com.ecommerce.repository.ProductRepository;

import com.ecommerce.repository.CategoryRepository;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.DisplayName;

import org.springframework.beans.factory.annotation.Autowired;
import
org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.http.MediaType;

import org.springframework.test.context.ActiveProfiles;

import org.springframework.test.web.servlet.MockMvc;

import org.springframework.transaction.annotation.Transactional;

import java.math.BigDecimal;

import static org.hamcrest.Matchers.*;

import static
org.springframework.test.web.servlet.request.MockMvcRequestBuilders.*;

import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.*;
import static org.springframework.test.web.servlet.result.MockMvcResultHandlers.*;

@SpringBootTest

@AutoConfigureMockMvc

@ActiveProfiles("test")

@Transactional // Rollback automatique apres chaque test
@isplayName("ProductController - Integration Tests")
class ProductControllerIntegrationTest {

@Autowired
private MockMvc mockMvc;

@Autowired

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

2026/01/29 23:14 11/25 3 - Tests et CI/CD

private ProductRepository productRepository;

@Autowired
private CategoryRepository categoryRepository;

private Category electronics;

@BeforeEach

void setUp() {
// Nettoyage (si @Transactional ne suffit pas)
productRepository.deleteAll();
categoryRepository.deleteAll();
// Données de test
electronics = categoryRepository.save(

new Category("Electronics", "Electronic devices")

);

}

@Test
@isplayName("GET /products/{id} should return 200 when product exists")
void getProduct WhenExists ShouldReturn200() throws Exception {
// Given
Product product = productRepository.save(
Product.builder()
.name("iPhone 15")
.price(new BigDecimal("999.99"))
.stock(50)
.category(electronics)
.build()
);

// When & Then
mockMvc.perform(get("/products/{id}", product.getId()))

.andDo(print()) // Affiche la requéte/réponse (utile pour déboguer)

.andExpect(status().is0k())
.andExpect(content().contentType(MediaType.APPLICATION JSON))
.andExpect(jsonPath("$.id") .value(product.getId().toString()))
.andExpect(jsonPath("$.name").value("iPhone 15"))
.andExpect(jsonPath("$.price").value(999.99))
.andExpect(jsonPath("$.stock").value(50))
.andExpect(jsonPath("$.category.name").value("Electronics"));

}

@Test

@DisplayName("GET /products/{id} should return 404 when product not found")

void getProduct WhenNotExists ShouldReturn404() throws Exception {
// When & Then
mockMvc.perform(get("/products/{id}",
"00000000-0000-0000-0000-000000000000"))
.andExpect(status().isNotFound())
.andExpect(jsonPath("$.message").exists());

}

@Test
@isplayName("POST /products should return 201 with valid data")
void createProduct WithValidData ShouldReturn201() throws Exception {

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

// Given
String requestBody = """
{
"name": "iPad Pro",
"price": 799.99,
"stock": 30,
"categoryId": "S%s"
}

""" formatted(electronics.getId());

// When & Then
mockMvc.perform(post("/products")
.contentType (MediaType.APPLICATION JSON)
.content(requestBody))
.andDo(print())
.andExpect(status().isCreated())
.andExpect (header().exists("Location"))
.andExpect(jsonPath("$.id").exists())
.andExpect(jsonPath("$.name").value("iPad Pro"))
.andExpect(jsonPath("$.price").value(799.99))
.andExpect(jsonPath("$.stock").value(30));

}

@Test

@DisplayName("POST /products should return 400 with invalid data")

void createProduct WithInvalidData ShouldReturn400() throws Exception {
// Given - prix négatif
String requestBody = """

{
"name": "Invalid Product",
"price": -10.00,
"stock": 10,
"categoryId": "Ss"
}

""" formatted(electronics.getId());

// When & Then
mockMvc.perform(post("/products")
.contentType(MediaType.APPLICATION JSON)
.content (requestBody))
.andExpect(status().isBadRequest())
.andExpect(jsonPath("$.errors").isArray());

}

@Test
@isplayName("PUT /products/{id}/stock should update stock correctly")
void updateStock WithValidQuantity ShouldReturn200() throws Exception {
// Given
Product product = productRepository.save(
Product.builder()
.name("Test Product")
.price(BigDecimal.TEN)
.stock(10)
.category(electronics)
.build()

i

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

2026/01/29 23:14 13/25 3 - Tests et CI/CD

String requestBody = """
{
"quantity": 5
}

non,
’

// When & Then
mockMvc.perform(put("/products/{id}/stock", product.getId())
.contentType (MediaType.APPLICATION JSON)
.content(requestBody))
.andExpect(status().is0k())
.andExpect(jsonPath("$.stock").value(15));

}

@Test
@DisplayName("GET /products should return paginated list")
void getProducts ShouldReturnPaginatedList() throws Exception {
// Given
productRepository.save(Product.builder()
.name("Product 1")
.price(BigDecimal.TEN)
.stock(10)
.category(electronics)
.build());
productRepository.save(Product.builder()
.name("Product 2")
.price(BigDecimal.value0f(20))
.stock(20)
.category(electronics)
.build());

// When & Then
mockMvc.perform(get("/products")
.param("page", "0")
.param("size", "10"))
.andExpect(status().is0k())
.andExpect (jsonPath("$.content").isArray())
.andExpect(jsonPath("$.content", hasSize(2)))
.andExpect(jsonPath("$.totalElements").value(2));

}

@Test
@DisplayName("GET /products should filter by category")
void getProducts WithCategoryFilter ShouldReturnFilteredList() throws Exception

// Given
Category books = categoryRepository.save(new Category("Books", "Books
category"));
productRepository.save(Product.builder()
.name("iPhone")
.price(BigDecimal.value0f(999))
.stock(10)
.category(electronics)
Lbuild());
productRepository.save(Product.builder()
.name("Java Book")

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

.price(BigDecimal.valueOf(50))
.stock(20)

.category(books)

.build());

// When & Then
mockMvc.perform(get("/products")

.param("categoryId", electronics.getId().toString()))
.andExpect(status().is0k())
.andExpect(jsonPath("$.content", hasSize(1l)))
.andExpect(jsonPath("$.content[0].name").value("iPhone"));

3.2 Concepts clés

// @SpringBootTest : Lance toute 1'application Spring
@SpringBootTest

// @AutoConfigureMockMvc : Configure MockMvc pour simuler les requétes HTTP
@AutoConfigureMockMvc

// @ActiveProfiles("test") : Utilise application-test.properties
@ActiveProfiles("test")

// @Transactional : Rollback automatique aprés chaque test
@Transactional

// MockMvc : Simule des requétes HTTP sans démarrer le serveur

mockMvc.perform(get("/products/123"))
.andExpect(status().is0k())
.andExpect(jsonPath("$.name").value("iPhone"));

// jsonPath : Parcourt la réponse JSON avec des expressions

jsonPath("$.name") // Champ direct
jsonPath("$.category.name") // Objet imbriqué
jsonPath("$.items[0].name") // Premier élément d'un tableau
jsonPath("$.items", hasSize(3)) // Taille du tableau

3.3 Test avec détection N+1

import io.hypersistence.utils.jdbc.validator.SQLStatementCountValidator;
import static io.hypersistence.utils.jdbc.validator.SQLStatementCountValidator.*;

@Test

@isplayName("GET /users/{id}/orders should not trigger N+1 queries")

void getUserOrders ShouldNotTriggerNPlusOne() throws Exception {
// Given
User user = userRepository.save(new User("John", "john@example.com"));
for (int i = 0; i < 5; i++) {

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

2026/01/29 23:14 15/25 3 - Tests et CI/CD

Order order = new Order(user);

order.addItem(new OrderItem(productl, 1, productl.getPrice()));
order.addItem(new OrderItem(product2, 2, product2.getPrice()));
orderRepository.save(order);

}

// When
SQLStatementCountValidator.reset();
mockMvc.perform(get("/users/{id}/orders", user.getId()))
.andExpect (status().is0k())
.andExpect(jsonPath("$", hasSize(5)))
.andExpect (jsonPath("$[0].items", hasSize(2)));

// Then - Vérifier le nombre de requétes SQL
assertSelectCount(2); // 1 pour User + 1 pour Orders avec items (JOIN FETCH)

Partie 4 : Couverture de code avec JaCoCo (20min)

4.1 Configuration Maven

<!-- pom.xml -->

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

<build>
<plugins>
<!-- JaCoCo pour la couverture de code -->
<plugin>
<groupIld>org.jacoco</groupld>
<artifactId>jacoco-maven-plugin</artifactId>
<version>0.8.11l</version>
<executions>
<execution>
<goals>
<goal>prepare-agent</goal>
</goals>
</execution>
<execution>
<id>report</id>
<phase>test</phase>
<goals>
<goal>report</goal>
</goals>
</execution>
<execution>
<id>jacoco-check</id>
<goals>
<goal>check</goal>
</goals>
<configuration>
<rules>
<rule>
<element>PACKAGE</element>
<limits>
<limit>
<counter>LINE</counter>
<value>COVEREDRATIO</value>
<minimum>0.70</minimum>
</limit>
</limits>
</rule>
</rules>
</configuration>
</execution>
</executions>
</plugin>

<!-- Surefire pour les tests unitaires -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>3.2.2</version>
<configuration>
<includes>
<include>**/*Test.java</include>
</includes>
<excludes>
<exclude>**/*IntegrationTest. java</exclude>
</excludes>
</configuration>

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

2026/01/29 23:14 17/25

3 - Tests et CI/CD

</plugin>

<!-- Failsafe pour les tests d'intégration -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-failsafe-plugin</artifactId>

<version>3.2.2</version>

<configuration>
<includes>
<include>**/*IntegrationTest.java</include>
</includes>
</configuration>
<executions>
<execution>
<goals>
<goal>integration-test</goal>
<goal>verify</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

4.2 Commandes Maven

Tests unitaires uniquement (rapides)
mvn clean test

Tests unitaires + rapport de couverture
mvn clean test jacoco:report

Tous les tests (unitaires + intégration)
mvn clean verify

Voir le rapport de couverture
open target/site/jacoco/index.html

4.3 Exclusion de certaines classes

<configuration>
<excludes>
<!-- Exclure les entités JPA -->
<exclude>**/domain/**</exclude>
<!-- Exclure les DTOs -->
<exclude>**/dto/**</exclude>
<!-- Exclure la classe main -->
<exclude>**/EcommerceApplication.class</exclude>
</excludes>
</configuration>

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

Partie 5 : GitHub Actions - Pipeline CI/CD complete (40min)

5.1 Workflow complet

Créer .github/workflows/ci.yml:

name: CI/CD Pipeline

on:
push:
branches: [main, develop]
pull request:
branches: [main, develop]

jobs:

Job 1 : Tests unitaires (rapides)
unit-tests:

name: Unit Tests

runs-on: ubuntu-latest

steps:

- name: Checkout code
uses: actions/checkout@v4

- name: Set up JDK 21
uses: actions/setup-java@v4
with:
java-version: '21'
distribution: 'temurin'
cache: maven

- name: Run unit tests
run: mvn clean test -P test

- name: Upload test results
if: always()
uses: actions/upload-artifact@v3
with:
name: unit-test-results
path: target/surefire-reports/

http://slamwiki2.kobject.net/

Printed on 2026/01/29 23:14

2026/01/29 23:14 19/25 3 - Tests et CI/CD

Job 2 : Tests d'intégration (plus longs)
integration-tests:
name: Integration Tests
runs-on: ubuntu-latest
needs: unit-tests # Attend que les tests unitaires passent
steps:
- name: Checkout code
uses: actions/checkout@v4

- name: Set up JDK 21
uses: actions/setup-java@véd
with:
java-version: '21'
distribution: 'temurin'
cache: maven

- name: Run integration tests
run: mvn clean verify -P test -DskipUnitTests

- name: Upload test results
if: always()
uses: actions/upload-artifact@v3
with:
name: integration-test-results
path: target/failsafe-reports/

Job 3 : Analyse de couverture
coverage:
name: Code Coverage
runs-on: ubuntu-latest
needs: integration-tests
steps:
- name: Checkout code
uses: actions/checkout@v4

- name: Set up JDK 21
uses: actions/setup-java@v4
with:
java-version: '21'
distribution: 'temurin'
cache: maven

- name: Generate coverage report
run: mvn clean verify jacoco:report -P test

- name: Upload coverage to Codecov
uses: codecov/codecov-action@v3
with:
files: ./target/site/jacoco/jacoco.xml
flags: unittests
name: codecov-umbrella
fail ci if error: false

- name: Upload JaCoCo report
uses: actions/upload-artifact@v3
with:

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

name: jacoco-report
path: target/site/jacoco/

Job 4 : Build (optionnel - pour vérifier que l'app compile)
build:

name: Build Application

runs-on: ubuntu-latest

needs: coverage

steps:

- name: Checkout code
uses: actions/checkout@v4

- name: Set up JDK 21
uses: actions/setup-java@v4
with:
java-version: '21'
distribution: 'temurin'
cache: maven

- name: Build with Maven
run: mvn clean package -P prod -DskipTests

- name: Upload artifact
uses: actions/upload-artifact@v3
with:
name: ecommerce-api
path: target/*.jar

5.2 Configuration pour séparer les tests

<!l-- pom.xml - Ajout de propriétés -->
<properties>
<skipUnitTests>false</skipUnitTests>
<skipIntegrationTests>false</skipIntegrationTests>
</properties>

<build>
<plugins>

<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<configuration>

<skipTests>${skipUnitTests}</skipTests>

</configuration>

</plugin>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactId>
<configuration>
<skipTests>${skipIntegrationTests}</skipTests>
</configuration>
</plugin>

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

2026/01/29 23:14 21/25 3 - Tests et CI/CD

</plugins>
</build>

5.3 Badges pour le README

E-Commerce API

I[CI/CD](https://github.com/VOTRE-USERNAME/VOTRE-REPO/actions/workflows/ci.yml/badg
e.svg)
I [Coverage] (https://codecov.io/gh/VOTRE-USERNAME/VOTRE-REPO/branch/main/graph/badge
.svg)

Description
API REST pour un systeme e-commerce avec Spring Boot 3.

Badges de statut

- **Build** : Statut de la compilation

- **Tests** : Résultat des tests automatisés

- **Coverage** : Pourcentage de code couvert par les tests

Commandes

" “bash
Tests unitaires uniquement
mvn test

Tests d'intégration uniquement
mvn verify -DskipUnitTests

Tous les tests
mvn verify

Rapport de couverture
mvn test jacoco:report

5.4 Protection de branche (optionnel)

Dans GitHub :

1. Settings - Branches - Add rule
2. Branch name pattern : main
3. Cocher:

o [] Require status checks to pass before merging

o [] Require branches to be up to date before merging

o Sélectionner : Unit Tests, Integration Tests, Code Coverage
4. Create

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

Récapitulatif des commandes

Lancer l'app en mode dev
mvn spring-boot:run -Dspring-boot.run.profiles=dev

Lancer l'app en mode test
mvn spring-boot:run -Dspring-boot.run.profiles=test

mvn spring-boot:run -P test

Tests unitaires uniquement (rapides, < 10s)
mvn clean test

Tests d'intégration uniquement
mvn clean verify -DskipUnitTests

Tous les tests
mvn clean verify

Tests avec rapport de couverture
mvn clean test jacoco:report

Générer le rapport JaCoCo
mvn jacoco:report

Ouvrir le rapport
open target/site/jacoco/index.html

Vérifier le seuil de couverture
mvn jacoco:check

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

2026/01/29 23:14 3 - Tests et CI/CD

Compiler sans tests
mvn clean package -DskipTests

Build complet
mvn clean install

Livrables attendus

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/29 11:30 eadl:bloc3:dev_av:td3 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

Aide-mémoire : Différences clés

Aspect Test Unitaire Test d'Intégration

Vitesse Tres rapide (<10ms) Plus lent (100-500ms)

Base de données |[] Non (mocks) [] Oui (H2 en mémoire)
Contexte Spring | Non 0 Oui (toute I'app)
Annotations @ExtendWith(MockitoExtension.class)|@SpringBootTest

Ce qu'on teste Logique métier isolée Flux complet de bout en bout
Quand ca échoue [Bug dans la logique Bug d'intégration/config
Commande Mavenmvn test mvn verify

Fichier de tests |*Test.java *IntegrationTest.java

Bonnes pratiques a retenir

Ressources essentielles

Spring Boot Testing - Documentation officielle
JUnit 5 User Guide

Mockito Documentation

Assert) Documentation

JaCoCo Maven Plugin

GitHub Actions - Documentation

Baeldung - Testing in Spring Boot

http://slamwiki2.kobject.net/ Printed on 2026/01/29 23:14

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.testing
https://junit.org/junit5/docs/current/user-guide/
https://javadoc.io/doc/org.mockito/mockito-core/latest/org/mockito/Mockito.html
https://assertj.github.io/doc/
https://www.jacoco.org/jacoco/trunk/doc/maven.html
https://docs.github.com/en/actions
https://www.baeldung.com/spring-boot-testing

2026/01/29 23:14 25/25 3 - Tests et CI/CD

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

Last update: 2025/10/29 11:30

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td3?rev=1761733842

	3 - Tests et CI/CD
	Objectifs pédagogiques
	Partie 0 : Point de départ (15min)
	Partie 1 : Configuration multi-environnements (30min)
	1.1 Stratégie de profils Spring
	Profiles
	Structure des fichiers
	application.properties (commun)
	application-dev.properties
	application-test.properties
	application-prod.properties

	1.2 Activation des profils

	Partie 2 : Tests Unitaires (1h15)
	2.1 Dépendances nécessaires (pom.xml)
	2.2 Premier test simple : ProductService
	2.3 Concepts clés
	2.4 Tests paramétrés (en plus)

	Partie 3 : Tests d'Intégration (1h15)
	3.1 Configuration de base
	3.2 Concepts clés
	3.3 Test avec détection N+1

	Partie 4 : Couverture de code avec JaCoCo (20min)
	4.1 Configuration Maven
	4.2 Commandes Maven
	4.3 Exclusion de certaines classes

	Partie 5 : GitHub Actions - Pipeline CI/CD complète (40min)
	5.1 Workflow complet
	5.2 Configuration pour séparer les tests
	5.3 Badges pour le README
	5.4 Protection de branche (optionnel)

	Récapitulatif des commandes
	Livrables attendus
	A faire en priorité
	En +, Si vous avez le temps

	Aide-mémoire : Différences clés
	Bonnes pratiques à retenir
	Tests unitaires
	Tests d'intégration
	CI/CD

	Ressources essentielles

