
2026/02/09 20:24 1/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

4 - Architecture Modulaire et Découplage

Objectifs pédagogiques

Comprendre les limites d'une architecture monolithique
Appliquer les principes SOLID (notamment DIP et OCP)
Mettre en place un système d'événements avec Spring Events
Utiliser les design patterns : Strategy, Observer, Factory
Introduire la notion de modules/packages par domaine métier
Tester les composants découplés

Contexte : User Story

US-042 : Notification email lors de la création d'une commande

En tant que client Je veux recevoir un email récapitulatif immédiatement après avoir passé une
commande Afin d'avoir une confirmation et les détails de ma commande

Critères d'acceptation :

Email envoyé automatiquement lors de la création d'une commande
Email contient : numéro de commande, liste des produits, montant total
La création de commande ne doit pas échouer si l'envoi d'email échoue
Le système doit être extensible pour ajouter d'autres notifications (SMS, push…)
Logs de toutes les notifications envoyées

Partie 0 : État des lieux - Le piège du couplage fort (20min)

0.1 Implémentation naïve (anti-pattern)

NE PAS FAIRE - Exemple de mauvaise pratique

@Service
class OrderService(
 private val orderRepository: OrderRepository,
 private val productRepository: ProductRepository,
 private val userRepository: UserRepository,
 private val mailSender: JavaMailSender // ❌ Dépendance directe
) {
 private val logger = LoggerFactory.getLogger(javaClass)
 @Transactional
 fun createOrder(dto: CreateOrderDto): Order {
 // 1. Validation et création
 val user = userRepository.findById(dto.userId)

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

 .orElseThrow { UserNotFoundException(dto.userId) }
 val order = Order(user = user)
 dto.items.forEach { itemDto ->
 val product = productRepository.findById(itemDto.productId)
 .orElseThrow { ProductNotFoundException(itemDto.productId) }
 if (product.stock < itemDto.quantity) {
 throw InsufficientStockException(product.id!!)
 }
 product.decreaseStock(itemDto.quantity)
 order.addItem(OrderItem(
 product = product,
 quantity = itemDto.quantity,
 unitPrice = product.price
))
 }
 val savedOrder = orderRepository.save(order)
 // ❌ PROBLÈME 1 : Logique métier mélangée avec l'envoi d'email
 // ❌ PROBLÈME 2 : Si l'email échoue, la transaction est rollback
 // ❌ PROBLÈME 3 : Impossible de tester la création sans email
 // ❌ PROBLÈME 4 : Pour ajouter SMS, il faut modifier cette classe
 try {
 sendOrderConfirmationEmail(savedOrder)
 } catch (e: Exception) {
 logger.error("Failed to send email for order ${savedOrder.id}", e)
 // Que faire ? Rollback ? Continuer ?
 }
 return savedOrder
 }
 private fun sendOrderConfirmationEmail(order: Order) {
 val message = mailSender.createMimeMessage()
 val helper = MimeMessageHelper(message, true, "UTF-8")
 helper.setTo(order.user.email)
 helper.setSubject("Order Confirmation #${order.id}")
 helper.setText(buildEmailContent(order), true)
 mailSender.send(message)
 logger.info("Email sent for order ${order.id}")
 }
 private fun buildEmailContent(order: Order): String {
 return """
 <html>
 <body>
 <h1>Order Confirmation</h1>
 <p>Order ID: ${order.id}</p>
 <p>Total: €${order.totalAmount}</p>
 </body>
 </html>
 """.trimIndent()
 }
}

0.2 Problèmes identifiés

Problèmes de cette implémentation :

2026/02/09 20:24 3/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Violation du Single Responsibility Principle
Couplage fort entre domaines métier (Order ↔ Email)
Testabilité compromise
Gestion d'erreur problématique (transaction vs notification)
Extensibilité limitée (ajout SMS, push…)
Performance (envoi synchrone bloquant)

0.3 Objectif de la séance

Transformer cette architecture monolithique en une architecture modulaire et découplée

order

notification events

OrderService OrderRepository

NotificationService

EmailSender SmsSender

ApplicationEventPublisher

OrderCreatedEvent

Découplage via événements
Spring Events

publishes

createslistensuses uses

Partie 1 : Réorganisation en packages par domaine (30min)

1.1 Structure modulaire proposée

src/main/kotlin/com/ecommerce/
├── order/ # Domaine Order
│ ├── domain/
│ │ ├── Order.kt
│ │ ├── OrderItem.kt
│ │ └── OrderStatus.kt
│ ├── dto/
│ │ ├── CreateOrderDto.kt
│ │ └── OrderResponseDto.kt
│ ├── repository/
│ │ └── OrderRepository.kt
│ ├── service/
│ │ └── OrderService.kt
│ ├── controller/
│ │ └── OrderController.kt
│ └── event/

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

│ └── OrderCreatedEvent.kt
│
├── notification/ # Domaine Notification
│ ├── domain/
│ │ ├── NotificationChannel.kt
│ │ └── NotificationLog.kt
│ ├── service/
│ │ ├── NotificationService.kt
│ │ └── sender/
│ │ ├── NotificationSender.kt (interface)
│ │ ├── EmailNotificationSender.kt
│ │ └── ConsoleNotificationSender.kt
│ ├── listener/
│ │ └── OrderNotificationListener.kt
│ ├── repository/
│ │ └── NotificationLogRepository.kt
│ └── config/
│ └── NotificationConfig.kt
│
├── product/ # Domaine Product
│ ├── domain/
│ ├── service/
│ └── ...
│
└── user/ # Domaine User
 ├── domain/
 ├── service/
 └── ...

Principe de packaging par domaine (DDD-lite) :

Chaque package = un domaine métier cohérent
Limite les dépendances croisées
Facilite l'extraction future en microservices
Améliore la lisibilité et la maintenabilité

1.2 Exercice de refactoring

Exercice 1 (20min) :

Réorganiser votre code existant selon cette structure :

Déplacer les classes Order* vers com.ecommerce.order.*
Déplacer les classes Product* vers com.ecommerce.product.*
Déplacer les classes User* vers com.ecommerce.user.*
Corriger les imports
Vérifier que tous les tests passent après refactoring

Validation :

mvn clean verify passe au vert
Aucune dépendance cyclique entre packages

2026/02/09 20:24 5/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Les controllers importent uniquement les services de leur domaine

Partie 2 : Spring Events pour le découplage (1h)

2.1 Création de l'événement métier

package com.ecommerce.order.event

import org.springframework.context.ApplicationEvent
import java.math.BigDecimal
import java.time.Instant
import java.util.*

/**
 * Événement publié lors de la création d'une commande
 */
class OrderCreatedEvent(
 source: Any,
 val orderId: UUID,
 val userId: UUID,
 val userEmail: String,
 val totalAmount: BigDecimal,
 val items: List<OrderItemInfo>,
 val createdAt: Instant = Instant.now()
) : ApplicationEvent(source) {
 data class OrderItemInfo(
 val productName: String,
 val quantity: Int,
 val unitPrice: BigDecimal
)
}

2.2 Publication de l'événement dans OrderService

package com.ecommerce.order.service

import com.ecommerce.order.domain.Order
import com.ecommerce.order.domain.OrderItem
import com.ecommerce.order.dto.CreateOrderDto
import com.ecommerce.order.event.OrderCreatedEvent
import com.ecommerce.order.repository.OrderRepository
import com.ecommerce.product.repository.ProductRepository
import com.ecommerce.user.repository.UserRepository
import com.ecommerce.exception.*
import org.slf4j.LoggerFactory
import org.springframework.context.ApplicationEventPublisher
import org.springframework.stereotype.Service

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

import org.springframework.transaction.annotation.Transactional
import java.util.*

@Service
class OrderService(
 private val orderRepository: OrderRepository,
 private val productRepository: ProductRepository,
 private val userRepository: UserRepository,
 private val eventPublisher: ApplicationEventPublisher // Injection de l'event
publisher
) {
 private val logger = LoggerFactory.getLogger(javaClass)
 @Transactional
 fun createOrder(dto: CreateOrderDto): Order {
 logger.info("Creating order for user ${dto.userId}")
 // 1. Validation
 val user = userRepository.findById(dto.userId)
 .orElseThrow { UserNotFoundException(dto.userId) }
 require(dto.items.isNotEmpty()) {
 "Order must contain at least one item"
 }
 // 2. Création de la commande
 val order = Order(user = user)
 dto.items.forEach { itemDto ->
 val product = productRepository.findById(itemDto.productId)
 .orElseThrow { ProductNotFoundException(itemDto.productId) }
 if (product.stock < itemDto.quantity) {
 throw InsufficientStockException(product.id!!)
 }
 product.decreaseStock(itemDto.quantity)
 order.addItem(OrderItem(
 product = product,
 quantity = itemDto.quantity,
 unitPrice = product.price
))
 }
 // 3. Sauvegarde
 val savedOrder = orderRepository.save(order)
 logger.info("Order ${savedOrder.id} created successfully")
 // 4. Publication de l'événement
 // APRÈS le commit de la transaction (voir @TransactionalEventListener)
 val event = OrderCreatedEvent(
 source = this,
 orderId = savedOrder.id!!,
 userId = user.id!!,
 userEmail = user.email,
 totalAmount = savedOrder.totalAmount,
 items = savedOrder.items.map { item ->
 OrderCreatedEvent.OrderItemInfo(
 productName = item.product.name,
 quantity = item.quantity,
 unitPrice = item.unitPrice
)
 }
)
 eventPublisher.publishEvent(event)

2026/02/09 20:24 7/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 logger.info("OrderCreatedEvent published for order ${savedOrder.id}")
 return savedOrder
 }
 fun getOrder(orderId: UUID): Order {
 return orderRepository.findById(orderId)
 .orElseThrow { OrderNotFoundException(orderId) }
 }
 fun getUserOrders(userId: UUID): List<Order> {
 return orderRepository.findByUserId(userId)
 }
}

2.3 Avantages de cette approche

Bénéfices du découplage par événements :

OrderService n'a aucune dépendance vers notification
Transaction commit AVANT le traitement de l'événement
Si l'email échoue, la commande reste créée
Testable indépendamment
Extensible : ajout de listeners sans modifier OrderService
Respect du principe Open/Closed (SOLID)

Partie 3 : Pattern Strategy pour les canaux de notification (1h)

«Strategy»
NotificationSender

send(recipient, subject, content)
getSupportedChannel(): NotificationChannel
isAvailable(): Boolean

«ConcreteStrategy»
EmailNotificationSender

mailSender: JavaMailSender
send()
getSupportedChannel(): EMAIL

«ConcreteStrategy»
ConsoleNotificationSender

send()
getSupportedChannel(): EMAIL

«ConcreteStrategy»
SmsNotificationSender

send()
getSupportedChannel(): SMS

«Context»
NotificationService

senders: List<NotificationSender>
sendNotification(channel, ...)

Le Context choisit dynamiquement
la bonne stratégie selon le canal

Strategy Pattern + Factory Pattern
(injection automatique Spring)

Interface commune pour
tous les algorithmes d'envoi

uses
0..*

3.1 Interface NotificationSender

package com.ecommerce.notification.service.sender

import com.ecommerce.notification.domain.NotificationChannel

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

/**
 * Contrat pour l'envoi de notifications
 * Pattern Strategy
 */
interface NotificationSender {
 /**
 * Envoie une notification
 * @param recipient Destinataire (email, numéro de téléphone...)
 * @param subject Sujet de la notification
 * @param content Contenu de la notification
 */
 fun send(recipient: String, subject: String, content: String)
 /**
 * Canal supporté par cette implémentation
 */
 fun getSupportedChannel(): NotificationChannel
 /**
 * Vérifie si l'envoi est disponible
 */
 fun isAvailable(): Boolean
}

3.2 Implémentation Console (pour dev/test)

package com.ecommerce.notification.service.sender

import com.ecommerce.notification.domain.NotificationChannel
import org.slf4j.LoggerFactory
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty
import org.springframework.stereotype.Component

/**
 * Implémentation de test qui affiche les notifications dans la console
 * Activée quand notification.email.enabled=false
 */
@Component
@ConditionalOnProperty(
 name = ["notification.email.enabled"],
 havingValue = "false",
 matchIfMissing = true
)
class ConsoleNotificationSender : NotificationSender {
 private val logger = LoggerFactory.getLogger(javaClass)
 override fun send(recipient: String, subject: String, content: String) {
 logger.info("""
 ╔══
 ║ � CONSOLE EMAIL NOTIFICATION
 ╠══
 ║ To: $recipient
 ║ Subject: $subject
 ╠══
 ║ $content
 ╚══

2026/02/09 20:24 9/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 """.trimIndent())
 }
 override fun getSupportedChannel() = NotificationChannel.EMAIL
 override fun isAvailable() = true
}

3.3 Implémentation Email (pour prod)

package com.ecommerce.notification.service.sender

import com.ecommerce.notification.domain.NotificationChannel
import jakarta.mail.internet.MimeMessage
import org.slf4j.LoggerFactory
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty
import org.springframework.mail.javamail.JavaMailSender
import org.springframework.mail.javamail.MimeMessageHelper
import org.springframework.stereotype.Component

/**
 * Implémentation réelle avec JavaMailSender
 * Activée quand notification.email.enabled=true
 */
@Component
@ConditionalOnProperty(
 name = ["notification.email.enabled"],
 havingValue = "true"
)
class EmailNotificationSender(
 private val mailSender: JavaMailSender
) : NotificationSender {
 private val logger = LoggerFactory.getLogger(javaClass)
 override fun send(recipient: String, subject: String, content: String) {
 try {
 val message: MimeMessage = mailSender.createMimeMessage()
 val helper = MimeMessageHelper(message, true, "UTF-8")
 helper.setTo(recipient)
 helper.setSubject(subject)
 helper.setText(content, true) // true = HTML
 mailSender.send(message)
 logger.info("Email sent successfully to $recipient")
 } catch (e: Exception) {
 logger.error("Failed to send email to $recipient", e)
 throw RuntimeException("Email sending failed", e)
 }
 }
 override fun getSupportedChannel() = NotificationChannel.EMAIL
 override fun isAvailable(): Boolean {
 return try {
 // Vérifier si le serveur SMTP est configuré
 mailSender.createMimeMessage()
 true
 } catch (e: Exception) {
 logger.warn("Email sender is not available", e)

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

 false
 }
 }
}

3.4 NotificationService avec Injection des senders

package com.ecommerce.notification.service

import com.ecommerce.notification.domain.NotificationChannel
import com.ecommerce.notification.domain.NotificationLog
import com.ecommerce.notification.repository.NotificationLogRepository
import com.ecommerce.notification.service.sender.NotificationSender
import org.slf4j.LoggerFactory
import org.springframework.stereotype.Service
import java.time.Instant

/**
 * Service de notification avec Pattern Factory
 * Sélectionne automatiquement le bon sender selon le canal
 */
@Service
class NotificationService(
 private val notificationSenders: List<NotificationSender>, // Spring injecte
TOUS les senders
 private val logRepository: NotificationLogRepository
) {
 private val logger = LoggerFactory.getLogger(javaClass)
 /**
 * Envoie une notification via le canal spécifié
 */
 fun sendNotification(
 channel: NotificationChannel,
 recipient: String,
 subject: String,
 content: String
) {
 logger.info("Sending $channel notification to $recipient")
 // Pattern Factory : sélectionner le bon sender
 val sender = notificationSenders.firstOrNull {
 it.getSupportedChannel() == channel
 } ?: run {
 logger.error("No sender found for channel $channel")
 logFailure(channel, recipient, subject, "No sender available for this
channel")
 return
 }
 // Vérifier la disponibilité
 if (!sender.isAvailable()) {
 logger.warn("Sender for $channel is not available")
 logFailure(channel, recipient, subject, "Sender unavailable")
 return
 }

2026/02/09 20:24 11/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 // Envoi
 try {
 sender.send(recipient, subject, content)
 logSuccess(channel, recipient, subject)
 } catch (e: Exception) {
 logger.error("Failed to send $channel notification to $recipient", e)
 logFailure(channel, recipient, subject, e.message ?: "Unknown error")
 }
 }
 private fun logSuccess(
 channel: NotificationChannel,
 recipient: String,
 subject: String
) {
 val log = NotificationLog(
 channel = channel,
 recipient = recipient,
 subject = subject,
 status = "SUCCESS",
 errorMessage = null,
 sentAt = Instant.now()
)
 logRepository.save(log)
 }
 private fun logFailure(
 channel: NotificationChannel,
 recipient: String,
 subject: String,
 errorMessage: String
) {
 val log = NotificationLog(
 channel = channel,
 recipient = recipient,
 subject = subject,
 status = "FAILED",
 errorMessage = errorMessage,
 sentAt = Instant.now()
)
 logRepository.save(log)
 }
 /**
 * Récupère l'historique des notifications pour un destinataire
 */
 fun getNotificationHistory(recipient: String): List<NotificationLog> {
 return logRepository.findByRecipientOrderBySentAtDesc(recipient)
 }
}

3.5 Entité NotificationLog

package com.ecommerce.notification.domain

import jakarta.persistence.*

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

import java.time.Instant
import java.util.*

@Entity
@Table(name = "notification_logs")
class NotificationLog(
 @Id
 @GeneratedValue(strategy = GenerationType.UUID)
 var id: UUID? = null,
 @Enumerated(EnumType.STRING)
 @Column(nullable = false)
 val channel: NotificationChannel,
 @Column(nullable = false)
 val recipient: String,
 @Column(nullable = false)
 val subject: String,
 @Column(nullable = false)
 val status: String, // SUCCESS, FAILED
 @Column(length = 1000)
 val errorMessage: String?,
 @Column(nullable = false)
 val sentAt: Instant
)

enum class NotificationChannel {
 EMAIL,
 SMS,
 PUSH
}

package com.ecommerce.notification.repository

import com.ecommerce.notification.domain.NotificationLog
import org.springframework.data.jpa.repository.JpaRepository
import org.springframework.stereotype.Repository
import java.util.*

@Repository
interface NotificationLogRepository : JpaRepository<NotificationLog, UUID> {
 fun findByRecipientOrderBySentAtDesc(recipient: String): List<NotificationLog>
}

Partie 4 : Listener d'événements (30min)

4.1 OrderNotificationListener

package com.ecommerce.notification.listener

import com.ecommerce.notification.domain.NotificationChannel

2026/02/09 20:24 13/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

import com.ecommerce.notification.service.NotificationService
import com.ecommerce.order.event.OrderCreatedEvent
import org.slf4j.LoggerFactory
import org.springframework.scheduling.annotation.Async
import org.springframework.stereotype.Component
import org.springframework.transaction.event.TransactionalEventListener
import org.springframework.transaction.event.TransactionPhase
import java.math.BigDecimal

/**
 * Écoute les événements OrderCreatedEvent et envoie des notifications
 *
 * @TransactionalEventListener : attend le COMMIT de la transaction
 * @Async : traitement asynchrone (ne bloque pas la réponse HTTP)
 */
@Component
class OrderNotificationListener(
 private val notificationService: NotificationService
) {
 private val logger = LoggerFactory.getLogger(javaClass)
 /**
 * Gère l'événement de création de commande
 * Phase AFTER_COMMIT : exécuté APRÈS le commit de la transaction
 */
 @Async
 @TransactionalEventListener(phase = TransactionPhase.AFTER_COMMIT)
 fun handleOrderCreated(event: OrderCreatedEvent) {
 logger.info("Received OrderCreatedEvent for order ${event.orderId}")
 try {
 // Envoi de la notification email
 notificationService.sendNotification(
 channel = NotificationChannel.EMAIL,
 recipient = event.userEmail,
 subject = "Order Confirmation #${event.orderId}",
 content = buildEmailContent(event)
)
 } catch (e: Exception) {
 // Si l'email échoue, la commande reste créée
 logger.error("Failed to send notification for order ${event.orderId}",
e)
 }
 }
 private fun buildEmailContent(event: OrderCreatedEvent): String {
 val html = StringBuilder()
 html.append("<!DOCTYPE html>")
 html.append("<html><head><meta charset='UTF-8'></head><body>")
 html.append("<h1>Order Confirmation</h1>")
 html.append("<p>Thank you for your order!</p>")
 html.append("<p>Order ID: ${event.orderId}</p>")
 html.append("<p>Order Date: ${event.createdAt}</p>")
 html.append("<h2>Order Details</h2>")
 html.append("<table border='1' cellpadding='10' cellspacing='0'>")
 html.append("<tr><th>Product</th><th>Quantity</th><th>Unit
Price</th><th>Total</th></tr>")
 event.items.forEach { item ->
 val itemTotal = item.unitPrice.multiply(BigDecimal(item.quantity))

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

 html.append("<tr>")
 html.append("<td>${item.productName}</td>")
 html.append("<td>${item.quantity}</td>")
 html.append("<td>€${item.unitPrice}</td>")
 html.append("<td>€$itemTotal</td>")
 html.append("</tr>")
 }
 html.append("</table>")
 html.append("<p>Total Amount: €${event.totalAmount}</p>")
 html.append("<p>Thank you for your order!</p>")
 html.append("</body></html>")
 return html.toString()
 }
}

4.2 Configuration pour @Async

package com.ecommerce.notification.config

import org.springframework.context.annotation.Configuration
import org.springframework.scheduling.annotation.EnableAsync

@Configuration
@EnableAsync
class NotificationConfig {
 // Configuration par défaut de Spring pour @Async
 // Un ThreadPoolTaskExecutor sera créé automatiquement
}

4.3 Configuration des propriétés

application-dev.properties
notification.email.enabled=false # Console en dev

application-test.properties
notification.email.enabled=false # Console en test

application-prod.properties
notification.email.enabled=true # Vrai email en prod

Configuration Spring Mail (seulement si enabled=true)
spring.mail.host=smtp.gmail.com
spring.mail.port=587
spring.mail.username=${SMTP_USERNAME}
spring.mail.password=${SMTP_PASSWORD}
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true

2026/02/09 20:24 15/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Partie 5 : Tests du système découplé (1h)

5.1 Test unitaire du NotificationService

package com.ecommerce.notification.service

import com.ecommerce.notification.domain.NotificationChannel
import com.ecommerce.notification.repository.NotificationLogRepository
import com.ecommerce.notification.service.sender.NotificationSender
import io.mockk.*
import org.assertj.core.api.Assertions.*
import org.junit.jupiter.api.BeforeEach
import org.junit.jupiter.api.DisplayName
import org.junit.jupiter.api.Test

@DisplayName("NotificationService - Unit Tests")
class NotificationServiceTest {
 private lateinit var logRepository: NotificationLogRepository
 private lateinit var emailSender: NotificationSender
 private lateinit var smsSender: NotificationSender
 private lateinit var notificationService: NotificationService
 @BeforeEach
 fun setUp() {
 logRepository = mockk(relaxed = true)
 emailSender = mockk()
 smsSender = mockk()
 every { emailSender.getSupportedChannel() } returns
NotificationChannel.EMAIL
 every { smsSender.getSupportedChannel() } returns NotificationChannel.SMS
 notificationService = NotificationService(
 notificationSenders = listOf(emailSender, smsSender),
 logRepository = logRepository
)
 }
 @Test
 @DisplayName("Should send notification when sender is available")
 fun `sendNotification with available sender should send successfully`() {
 // Given
 every { emailSender.isAvailable() } returns true
 every { emailSender.send(any(), any(), any()) } just Runs
 // When
 notificationService.sendNotification(
 NotificationChannel.EMAIL,
 "test@example.com",
 "Test Subject",
 "Test Content"
)
 // Then
 verify(exactly = 1) {
 emailSender.send("test@example.com", "Test Subject", "Test Content")
 }
 verify(exactly = 1) {

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

 logRepository.save(match { it.status == "SUCCESS" })
 }
 }
 @Test
 @DisplayName("Should log failure when sender throws exception")
 fun `sendNotification when sender fails should log error`() {
 // Given
 every { emailSender.isAvailable() } returns true
 every { emailSender.send(any(), any(), any()) } throws
RuntimeException("SMTP error")
 // When
 notificationService.sendNotification(
 NotificationChannel.EMAIL,
 "test@example.com",
 "Test",
 "Content"
)
 // Then
 verify(exactly = 1) {
 logRepository.save(match {
 it.status == "FAILED" && it.errorMessage?.contains("SMTP error") ==
true
 })
 }
 }
 @Test
 @DisplayName("Should not send when no sender for channel")
 fun `sendNotification with unsupported channel should log failure`() {
 // Given
 // Pas de sender pour PUSH
 // When
 notificationService.sendNotification(
 NotificationChannel.PUSH,
 "test@example.com",
 "Test",
 "Content"
)
 // Then
 verify(exactly = 0) {
 emailSender.send(any(), any(), any())
 smsSender.send(any(), any(), any())
 }
 verify(exactly = 1) {
 logRepository.save(match {
 it.status == "FAILED" &&
 it.errorMessage?.contains("No sender available") == true
 })
 }
 }
 @Test
 @DisplayName("Should not send when sender is unavailable")
 fun `sendNotification when sender unavailable should log failure`() {
 // Given
 every { emailSender.isAvailable() } returns false
 // When
 notificationService.sendNotification(

2026/02/09 20:24 17/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 NotificationChannel.EMAIL,
 "test@example.com",
 "Test",
 "Content"
)
 // Then
 verify(exactly = 0) { emailSender.send(anyString(), anyString(),
anyString()) }
 verify(exactly = 1) {
 logRepository.save(match {
 it.status == "FAILED" &&
 it.errorMessage?.contains("unavailable") == true
 })
 }
 }
}

5.2 Test d'intégration avec capture d'événements

package com.ecommerce.order.controller

import com.ecommerce.order.event.OrderCreatedEvent
import org.assertj.core.api.Assertions.*
import org.junit.jupiter.api.BeforeEach
import org.junit.jupiter.api.DisplayName
import org.junit.jupiter.api.Test
import org.springframework.beans.factory.annotation.Autowired
import org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc
import org.springframework.boot.test.context.SpringBootTest
import org.springframework.boot.test.context.TestConfiguration
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Primary
import org.springframework.context.event.EventListener
import org.springframework.http.MediaType
import org.springframework.test.context.ActiveProfiles
import org.springframework.test.web.servlet.MockMvc
import org.springframework.test.web.servlet.post
import org.springframework.transaction.annotation.Transactional

@SpringBootTest
@AutoConfigureMockMvc
@ActiveProfiles("test")
@Transactional
@DisplayName("OrderController - Integration Tests with Events")
class OrderControllerEventIntegrationTest {
 @Autowired
 private lateinit var mockMvc: MockMvc
 @Autowired
 private lateinit var testEventListener: TestEventListener
 @BeforeEach
 fun setUp() {
 testEventListener.reset()
 }

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

 @Test
 @DisplayName("POST /orders should publish OrderCreatedEvent")
 fun `createOrder should publish event after successful creation`() {
 // Given
 val orderRequest = """
 {
 "userId": "${setupUserId()}",
 "items": [
 {
 "productId": "${setupProductId()}",
 "quantity": 2
 }
]
 }
 """.trimIndent()
 // When
 mockMvc.post("/orders") {
 contentType = MediaType.APPLICATION_JSON
 content = orderRequest
 }.andExpect {
 status { isCreated() }
 }
 // Then - Vérifier que l'événement a été publié
 Thread.sleep(500) // Attendre le traitement asynchrone
 val events = testEventListener.getReceivedEvents()
 assertThat(events).hasSize(1)
 val event = events[0]
 assertThat(event.userEmail).isNotEmpty()
 assertThat(event.totalAmount).isGreaterThan(java.math.BigDecimal.ZERO)
 assertThat(event.items).isNotEmpty()
 }
 private fun setupUserId(): String {
 // Créer un utilisateur de test
 // TODO: implémenter
 return java.util.UUID.randomUUID().toString()
 }
 private fun setupProductId(): String {
 // Créer un produit de test
 // TODO: implémenter
 return java.util.UUID.randomUUID().toString()
 }
 /**
 * Configuration de test pour capturer les événements
 */
 @TestConfiguration
 class TestConfig {
 @Bean
 @Primary
 fun testEventListener(): TestEventListener {
 return TestEventListener()
 }
 }
 /**
 * Listener de test pour vérifier la publication d'événements
 */
 class TestEventListener {

2026/02/09 20:24 19/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 private val receivedEvents = mutableListOf<OrderCreatedEvent>()
 @EventListener
 fun handleEvent(event: OrderCreatedEvent) {
 receivedEvents.add(event)
 }
 fun getReceivedEvents(): List<OrderCreatedEvent> = receivedEvents.toList()
 fun reset() {
 receivedEvents.clear()
 }
 }
}

5.3 Test unitaire du Listener

package com.ecommerce.notification.listener

import com.ecommerce.notification.domain.NotificationChannel
import com.ecommerce.notification.service.NotificationService
import com.ecommerce.order.event.OrderCreatedEvent
import io.mockk.*
import org.junit.jupiter.api.BeforeEach
import org.junit.jupiter.api.DisplayName
import org.junit.jupiter.api.Test
import java.math.BigDecimal
import java.util.*

@DisplayName("OrderNotificationListener - Unit Tests")
class OrderNotificationListenerTest {
 private lateinit var notificationService: NotificationService
 private lateinit var listener: OrderNotificationListener
 @BeforeEach
 fun setUp() {
 notificationService = mockk(relaxed = true)
 listener = OrderNotificationListener(notificationService)
 }
 @Test
 @DisplayName("Should send email notification when order is created")
 fun `handleOrderCreated should send email notification`() {
 // Given
 val event = OrderCreatedEvent(
 source = this,
 orderId = UUID.randomUUID(),
 userId = UUID.randomUUID(),
 userEmail = "customer@example.com",
 totalAmount = BigDecimal.valueOf(100.00),
 items = emptyList()
)
 // When
 listener.handleOrderCreated(event)
 // Then
 verify(exactly = 1) {
 notificationService.sendNotification(
 NotificationChannel.EMAIL,

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

 "customer@example.com",
 match { it.contains("Order Confirmation") },
 any()
)
 }
 }
 @Test
 @DisplayName("Should include order details in email content")
 fun `handleOrderCreated should include all order information`() {
 // Given
 val orderId = UUID.randomUUID()
 val event = OrderCreatedEvent(
 source = this,
 orderId = orderId,
 userId = UUID.randomUUID(),
 userEmail = "customer@example.com",
 totalAmount = BigDecimal("250.00"),
 items = listOf(
 OrderCreatedEvent.OrderItemInfo("Product A", 2,
BigDecimal("100.00")),
 OrderCreatedEvent.OrderItemInfo("Product B", 1,
BigDecimal("50.00"))
)
)
 // When
 listener.handleOrderCreated(event)
 // Then
 verify {
 notificationService.sendNotification(
 NotificationChannel.EMAIL,
 "customer@example.com",
 any(),
 match { content ->
 content.contains(orderId.toString()) &&
 content.contains("Product A") &&
 content.contains("Product B") &&
 content.contains("250.00")
 }
)
 }
 }
}

Exercice 2 (45min) :

Compléter la suite de tests :

Test du ConsoleNotificationSender
Test d'intégration complet : création commande → vérification log notification
Test de gestion d'erreur : email invalide
Test de performance : vérifier que l'envoi est bien asynchrone (temps de réponse < 500ms)

Validation :

Tous les tests passent

2026/02/09 20:24 21/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Couverture > 80% sur le package notification
Tests asynchrones correctement gérés

Partie 6 : Extension - Ajout d'un nouveau canal (SMS) (20min -
Bonus)

Challenge : Ajouter un canal SMS sans modifier le code existant (principe Open/Closed)

package com.ecommerce.notification.service.sender

import com.ecommerce.notification.domain.NotificationChannel
import org.slf4j.LoggerFactory
import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty
import org.springframework.stereotype.Component

@Component
@ConditionalOnProperty(
 name = ["notification.sms.enabled"],
 havingValue = "true"
)
class SmsNotificationSender : NotificationSender {
 private val logger = LoggerFactory.getLogger(javaClass)
 override fun send(recipient: String, subject: String, content: String) {
 // Intégration avec Twilio, AWS SNS, etc.
 logger.info("Sending SMS to $recipient: $content")
 // Implémentation simplifiée pour la demo
 }
 override fun getSupportedChannel() = NotificationChannel.SMS
 override fun isAvailable() = true
}

Points à noter :

Aucune modification dans NotificationService
Spring injecte automatiquement le nouveau sender
Activation via configuration (notification.sms.enabled)

Récapitulatif : Architecture finale

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

order

notification

product
Spring Events

OrderService

OrderController OrderCreatedEventNotificationService

OrderNotificationListener

EmailSender SmsSender ConsoleSender

NotificationSender

ProductService ApplicationEventPublisher

✅ Aucune dépendance
vers notification

✅ Pattern Strategy
✅ Pattern Factory
✅ Extensible

uses

uses publishes

creates

listensuses

uses

Bonus : Visualiser les emails avec MailHog (10min)

MailHog = Serveur SMTP factice avec interface web

Pas de configuration SMTP réelle
Interface web pour voir tous les emails
Pas de risque d'envoyer de vrais emails

1. Ajouter MailHog au docker-compose.yml

 mailhog:
 image: mailhog/mailhog:latest
 container_name: ecommerce-mailhog
 ports:
 - "1025:1025" # SMTP
 - "8025:8025" # Web UI
 networks:
 - ecommerce-network

2. Configuration Spring

Modifier src/main/resources/application-dev.properties :

MailHog
spring.mail.host=localhost
spring.mail.port=1025
spring.mail.username=

2026/02/09 20:24 23/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

spring.mail.password=
spring.mail.properties.mail.smtp.auth=false
spring.mail.properties.mail.smtp.starttls.enable=false

notification.email.enabled=true
notification.email.from=noreply@ecommerce-demo.com

Logs pour voir les envois
logging.level.org.springframework.mail=DEBUG

3. Améliorer les logs dans EmailNotificationSender

override fun send(recipient: String, subject: String, content: String) {
 try {
 val message = mailSender.createMimeMessage()
 val helper = MimeMessageHelper(message, true, "UTF-8")
 helper.setFrom(fromEmail)
 helper.setTo(recipient)
 helper.setSubject(subject)
 helper.setText(content, true)
 mailSender.send(message)
 logger.info("✅ Email sent to: $recipient")
 logger.debug("� Check MailHog UI: http://localhost:8025")
 } catch (e: Exception) {
 logger.error("❌ Failed to send email", e)
 throw RuntimeException("Email sending failed", e)
 }
}

4. Test

1. Démarrer MailHog
docker-compose up -d mailhog

2. Lancer l'application avec le profil dev
./gradlew bootRun --args='--spring.profiles.active=dev'

3. Créer une commande
curl -X POST http://localhost:8080/api/orders \
 -H "Content-Type: application/json" \
 -d '{
 "customerId": 1,
 "customerEmail": "test@example.com",
 "items": [{"productId": 1, "quantity": 2, "price": 29.99}]
 }'

4. Ouvrir MailHog
open http://localhost:8025

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

Résultat attendu :

Email visible dans MailHog en < 2 secondes
Sujet : “Order Confirmation #XXX”
Contenu : Détails de la commande en HTML

Production vs Développement :

En développement (MailHog) :

spring.mail.host=localhost
spring.mail.port=1025

En production (SMTP réel) :

spring.mail.host=smtp.gmail.com
spring.mail.port=587
spring.mail.username=${SMTP_USERNAME}
spring.mail.password=${SMTP_PASSWORD}
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true

⚠️ Ne jamais commiter les credentials SMTP !

Livrables attendus

Priorités (4h)

Architecture modulaire (30min) :

Packages réorganisés par domaine (order, notification, product, user)
Pas de dépendances cycliques
Tests passent après refactoring

Système de notification (2h) :

OrderCreatedEvent implémenté
Publication d'événement dans OrderService
Interface NotificationSender + 2 implémentations (Console + Email)
NotificationService avec Pattern Factory
OrderNotificationListener avec @TransactionalEventListener
Entité NotificationLog pour audit
Configuration multi-environnements

Tests (1h) :

Tests unitaires de NotificationService
Tests unitaires de OrderNotificationListener
Test d'intégration avec capture d'événements

2026/02/09 20:24 25/26 4 - Architecture Modulaire et Découplage

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Vérification que l'envoi est asynchrone
Couverture > 70% sur le package notification

Documentation (30min) :

Diagramme d'architecture dans le README
Documentation des patterns utilisés
Guide de configuration des notifications

Bonus (si temps)

Ajout du canal SMS
Template d'email avec Thymeleaf
Retry automatique en cas d'échec
Dashboard des notifications dans H2 console
Métriques Prometheus (nombre d'emails envoyés)

Concepts clés à retenir

Design Patterns appliqués

Observer : Spring Events pour la communication inter-domaines
Strategy : NotificationSender avec différentes implémentations
Factory : Injection automatique de tous les senders
Dependency Inversion : OrderService ne dépend que d'abstractions

Principes SOLID

Single Responsibility : chaque service a une responsabilité unique
Open/Closed : ajout de canaux sans modifier le code existant
Liskov Substitution : toutes les implémentations respectent le contrat
Interface Segregation : interface minimale NotificationSender
Dependency Inversion : dépendances vers abstractions, pas implémentations

Architecture

Packaging par domaine : prépare la transition vers les microservices
Event-driven : découplage temporel et organisationnel
Async processing : performances et résilience
Configuration externalisée : flexibilité environnements

Ressources

Spring Events Documentation
Refactoring Guru - Design Patterns
Martin Fowler - Event-Driven Architecture
Baeldung - Spring Events
Spring @Async Documentation
MockK Documentation
Kotlin Data Classes

https://docs.spring.io/spring-framework/reference/core/beans/context-introduction.html#context-functionality-events
https://refactoring.guru/design-patterns/catalog
https://martinfowler.com/articles/201701-event-driven.html
https://www.baeldung.com/spring-events
https://docs.spring.io/spring-framework/reference/integration/scheduling.html#scheduling-annotation-support-async
https://mockk.io/
https://kotlinlang.org/docs/data-classes.html

Last update: 2025/11/09 20:25 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

http://slamwiki2.kobject.net/ Printed on 2026/02/09 20:24

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

Last update: 2025/11/09 20:25

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762716323

	4 - Architecture Modulaire et Découplage
	Objectifs pédagogiques
	Contexte : User Story
	Partie 0 : État des lieux - Le piège du couplage fort (20min)
	0.1 Implémentation naïve (anti-pattern)
	0.2 Problèmes identifiés
	0.3 Objectif de la séance

	Partie 1 : Réorganisation en packages par domaine (30min)
	1.1 Structure modulaire proposée
	1.2 Exercice de refactoring

	Partie 2 : Spring Events pour le découplage (1h)
	2.1 Création de l'événement métier
	2.2 Publication de l'événement dans OrderService
	2.3 Avantages de cette approche

	Partie 3 : Pattern Strategy pour les canaux de notification (1h)
	3.1 Interface NotificationSender
	3.2 Implémentation Console (pour dev/test)
	3.3 Implémentation Email (pour prod)
	3.4 NotificationService avec Injection des senders
	3.5 Entité NotificationLog

	Partie 4 : Listener d'événements (30min)
	4.1 OrderNotificationListener
	4.2 Configuration pour @Async
	4.3 Configuration des propriétés

	Partie 5 : Tests du système découplé (1h)
	5.1 Test unitaire du NotificationService
	5.2 Test d'intégration avec capture d'événements
	5.3 Test unitaire du Listener

	Partie 6 : Extension - Ajout d'un nouveau canal (SMS) (20min - Bonus)
	Récapitulatif : Architecture finale
	Bonus : Visualiser les emails avec MailHog (10min)
	1. Ajouter MailHog au docker-compose.yml
	2. Configuration Spring
	3. Améliorer les logs dans EmailNotificationSender
	4. Test

	Livrables attendus
	Priorités (4h)
	Bonus (si temps)

	Concepts clés à retenir
	Design Patterns appliqués
	Principes SOLID
	Architecture

	Ressources

