2026/01/30 21:43 1/28 4 - Architecture Modulaire et Découplage

4 - Architecture Modulaire et Découplage

Objectifs pédagogiques

Comprendre les limites d'une architecture monolithique
Appliquer les principes SOLID (notamment DIP et OCP)

Mettre en place un systéme d'événements avec Spring Events
Utiliser les design patterns : Strategy, Observer, Factory
Introduire la notion de modules/packages par domaine métier
Tester les composants découplés

Contexte : User Story

Partie 0 : Etat des lieux - Le piége du couplage fort (20min)

0.1 Implémentation naive (anti-pattern)

@Service
class OrderService(
private val orderRepository: OrderRepository,
private val productRepository: ProductRepository,
private val userRepository: UserRepository,
private val mailSender: JavaMailSender // [] Dépendance directe
) {
private val logger = LoggerFactory.getLogger(javaClass)
@Transactional
fun createOrder(dto: CreateOrderDto): Order {
// 1. Validation et création
val user = userRepository.findById(dto.userId)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

.orElseThrow { UserNotFoundException(dto.userId) }
val order = Order(user = user)
dto.items.forEach { itemDto ->
val product = productRepository.findById(itemDto.productId)
.orElseThrow { ProductNotFoundException(itemDto.productId) }
if (product.stock < itemDto.quantity) {
throw InsufficientStockException(product.id!!)
}
product.decreaseStock(itemDto.quantity)
order.addItem(OrderItem(
product = product,
quantity = itemDto.quantity,
unitPrice = product.price
))
}

val savedOrder = orderRepository.save(order)
// [0 PROBLEME 1 : Logique métier mélangée avec 1'envoi d'email
// [PROBLEME 2 : Si 1'email échoue, la transaction est rollback
// 0 PROBLEME 3 : Impossible de tester la création sans email
// [0 PROBLEME 4 : Pour ajouter SMS, il faut modifier cette classe
try {
sendOrderConfirmationEmail (savedOrder)
} catch (e: Exception) {
logger.error("Failed to send email for order ${savedOrder.id}", e)
// Que faire ? Rollback ? Continuer ?
}
return savedOrder
}
private fun sendOrderConfirmationEmail(order: Order) {
val message = mailSender.createMimeMessage()
val helper = MimeMessageHelper(message, true, "UTF-8")
helper.setTo(order.user.email)
helper.setSubject("Order Confirmation #${order.id}")
helper.setText(buildEmailContent(order), true)
mailSender.send(message)
logger.info("Email sent for order ${order.id}")

}
private fun buildEmailContent(order: Order): String {
return """
<html>
<body>
<h1>0rder Confirmation</hl>
<p>0rder ID: ${order.id}</p>
<p>Total: €${order.totalAmount}</p>
</body>
</html>
""" otrimIndent ()
}

0.2 Problemes identifiés

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43

3/28

4 - Architecture Modulaire et Découplage

0.3 Objectif de la séance

Transformer cette architecture monolithique en une architecture modulaire et découplée

notification \

order \

OrderService

El

g]
OrderRepository

:publishes

events \

NotificationService

4
Y \

s
» uses
s

K A |

El

EmailSender SmsSender

El

L

[
Y

/J Découplage via événements ﬁ

£]
ApplicationEventPublisher %j Spring Events

I
I

) I
\Ilstens ,creates
~ < ’

~
A

OrderCreatedEvent

El

Partie 1 : Réorganisation en packages par domaine (30min)

1.1 Structure modulaire proposée

src/main/kotlin/com/ecommerce/

—— order/

domain/

—— Order.kt

— OrderItem.kt
L— OrderStatus.kt
dto/

—— CreateOrderDto.kt
L— OrderResponseDto. kt
repository/

L — OrderRepository.kt
service/

L— OrderService.kt
controller/

L— OrderController.kt
event/

Domaine Order

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

L OrderCreatedEvent.kt

— notification/ # Domaine Notification
— domain/
— NotificationChannel.kt
L — NotificationLog.kt
— service/
— NotificationService.kt
L— sender/
— NotificationSender.kt (interface)
— EmailNotificationSender.kt
L ConsoleNotificationSender.kt
— listener/
L— OrderNotificationListener.kt
—— repository/
L NotificationLogRepository.kt
— config/
L— NotificationConfig.kt

— product/ # Domaine Product
— domain/

— service/

— user/ # Domaine User
— domain/

— service/

1.2 Exercice de refactoring

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43 5/28 4 - Architecture Modulaire et Découplage

Partie 2 : Spring Events pour le découplage (1h)

2.1 Création de I'événement métier

package com.ecommerce.order.event

import org.springframework.context.ApplicationEvent
import java.math.BigDecimal

import java.time.Instant

import java.util.*

/**
* Evénement publié lors de la création d'une commande
*/
class OrderCreatedEvent (
source: Any,
val orderId: UUID,
val userId: UUID,
val userEmail: String,
val totalAmount: BigDecimal,
val items: List<OrderItemInfo>,
val createdAt: Instant = Instant.now()
) : ApplicationEvent(source) {
data class OrderItemInfo(
val productName: String,
val quantity: Int,
val unitPrice: BigDecimal

2.2 Publication de I'événement dans OrderService

package com.ecommerce.order.service

import com.ecommerce.order.domain.Order

import com.ecommerce.order.domain.OrderItem

import com.ecommerce.order.dto.CreateOrderDto

import com.ecommerce.order.event.OrderCreatedEvent

import com.ecommerce.order.repository.OrderRepository
import com.ecommerce.product.repository.ProductRepository
import com.ecommerce.user.repository.UserRepository
import com.ecommerce.exception.*

import org.slf4j.LoggerFactory

import org.springframework.context.ApplicationEventPublisher
import org.springframework.stereotype.Service

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

import org.springframework.transaction.annotation.Transactional

import java.

@Service

util.*

class OrderService(

private val orderRepository: OrderRepository,

private val productRepository: ProductRepository,

private val userRepository: UserRepository,

private val eventPublisher: ApplicationEventPublisher // Injection de 1'event
publisher
) {

private val logger = LoggerFactory.getLogger(javaClass)

@Transactional

fun createOrder(dto: CreateOrderDto): Order {
logger.info("Creating order for user ${dto.userId}")
// 1. Validation

val

user = userRepository.findById(dto.userId)
.orElseThrow { UserNotFoundException(dto.userId) }

require(dto.items.isNotEmpty()) {

}

"Order must contain at least one item"

// 2. Création de la commande

val

dto.

}

order = Order(user = user)
items.forEach { itemDto ->
val product = productRepository.findById(itemDto.productId)
.orElseThrow { ProductNotFoundException(itemDto.productId) }
if (product.stock < itemDto.quantity) {
throw InsufficientStockException(product.id!!)
}
product.decreaseStock(itemDto.quantity)
order.addItem(OrderItem(
product = product,
quantity = itemDto.quantity,
unitPrice = product.price

))

// 3. Sauvegarde

val

savedOrder = orderRepository.save(order)

logger.info("Order ${savedOrder.id} created successfully")

// 4. Publication de 1'événement
// APRES le commit de la transaction (voir @TransactionalEventListener)
val event = OrderCreatedEvent (
source = this,
orderId = savedOrder.id!!,
userId = user.id!!,
userEmail = user.email,
totalAmount = savedOrder.totalAmount,
items = savedOrder.items.map { item ->
OrderCreatedEvent.OrderItemInfo(
productName = item.product.name,
quantity = item.quantity,
unitPrice = item.unitPrice

}
)

eventPublisher.publishEvent (event)

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43 7/28 4 - Architecture Modulaire et Découplage

logger.info("OrderCreatedEvent published for order ${savedOrder.id}")
return savedOrder
}
fun getOrder(orderId: UUID): Order {
return orderRepository.findById(orderId)
.orElseThrow { OrderNotFoundException(orderId) }
}
fun getUserOrders(userId: UUID): List<Order> {
return orderRepository.findByUserId(userld)

2.3 Avantages de cette approche

Partie 3 : Pattern Strategy pour les canaux de notification (1h)

«Context»

NotificationService Le Context choisit dynamiquement
la bonne stratégie selon le canal
o senders: List<NotificationSender> Strategy Pattern + Factory Pattern

injecti t ti i
o sendNotification(channel, ...) (injection automatique Spring)

uses
0..*

«Strategy»
NotificationSender

o send(recipient, subject, content)
o getSupportedChannel(): NotificationChannel
o isAvailable(): Boolean

Pr <7 %
e 7 N RN
- ’ > S S
P / N S o
- /7 N ~
«ConcreteStrategy» y TSl
f PP ConcreteStrategy» «ConcreteStrategy» ~_
EmailNotificationSender ConsoleNotificationSender SmsNotificationSender Interface commune pour

o mailSender: JavaMailSender tous les algorithmes d'envoi ﬁ
o send() o send() o send()
& GetSlpportedChannel(): EMAIL o getSupportedChannel(): EMAIL o getSupportedChannel(): SMS

3.1 Interface NotificationSender

package com.ecommerce.notification.service.sender

import com.ecommerce.notification.domain.NotificationChannel

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

/**
* Contrat pour l'envoi de notifications
* Pattern Strategy

*/
interface NotificationSender {
/**
* Envoie une notification
* @param recipient Destinataire (email, numéro de téléphone...)
* @param subject Sujet de la notification
* @param content Contenu de la notification
*/
fun send(recipient: String, subject: String, content: String)
/**
* Canal supporté par cette implémentation
*/
fun getSupportedChannel(): NotificationChannel
/**
* \Vérifie si l'envoi est disponible
*/

fun isAvailable(): Boolean

3.2 Implémentation Console (pour dev/test)

package com.ecommerce.notification.service.sender

import com.ecommerce.notification.domain.NotificationChannel

import org.slf4j.LoggerFactory

import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty
import org.springframework.stereotype.Component

/**
* Implémentation de test qui affiche les notifications dans la console
* Activée quand notification.email.enabled=false
*/
@Component
@ConditionalOnProperty (
name = ["notification.email.enabled"],
havingValue = "false",
matchIfMissing = true
)
class ConsoleNotificationSender : NotificationSender {
private val logger = LoggerFactory.getlLogger(javaClass)
override fun send(recipient: String, subject: String, content: String) {
logger.info ("""

[] CONSOLE EMAIL NOTIFICATION

To: $recipient
Subject: $subject

$content

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43 9/28 4 - Architecture Modulaire et Découplage

}

" otrimIndent())

override fun getSupportedChannel() = NotificationChannel.EMAIL
override fun isAvailable() = true

3.3 Implémentation Email (pour prod)

package com.ecommerce.notification.service.sender

import
import
import
import
import
import
import

/**

com.ecommerce.notification.domain.NotificationChannel
jakarta.mail.internet.MimeMessage

org.slf4j.LoggerFactory
org.springframework.boot.autoconfigure.condition.ConditionalOnProperty
org.springframework.mail. javamail.JavaMailSender
org.springframework.mail. javamail.MimeMessageHelper
org.springframework.stereotype.Component

* Implémentation réelle avec JavaMailSender
* Activée quand notification.email.enabled=true

*/

@Component

@ConditionalOnProperty (
name = ["notification.email.enabled"],
havingValue = "true"

)

class EmailNotificationSender(
private val mailSender: JavaMailSender
) : NotificationSender {
private val logger = LoggerFactory.getLogger(javaClass)
override fun send(recipient: String, subject: String, content: String) {

}

try {
val message: MimeMessage = mailSender.createMimeMessage()
val helper = MimeMessageHelper(message, true, "UTF-8")
helper.setTo(recipient)
helper.setSubject(subject)
helper.setText(content, true) // true = HTML
mailSender.send(message)
logger.info("Email sent successfully to $recipient")

} catch (e: Exception) {
logger.error("Failed to send email to $recipient", e)
throw RuntimeException("Email sending failed", e)

}

override fun getSupportedChannel() = NotificationChannel.EMAIL
override fun isAvailable(): Boolean {

return try {
// Vérifier si le serveur SMTP est configuré
mailSender.createMimeMessage()
true
} catch (e: Exception) {
logger.warn("Email sender is not available", e)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

false

3.4 NotificationService avec Injection des senders

package com.ecommerce.notification.service

import com.ecommerce.notification.domain.NotificationChannel

import com.ecommerce.notification.domain.NotificationLog

import com.ecommerce.notification.repository.NotificationLogRepository
import com.ecommerce.notification.service.sender.NotificationSender
import org.slf4j.LoggerFactory

import org.springframework.stereotype.Service

import java.time.Instant

/**
* Service de notification avec Pattern Factory
* Sélectionne automatiquement le bon sender selon le canal
*/
@Service
class NotificationService(
private val notificationSenders: List<NotificationSender>, // Spring injecte
TOUS les senders
private val logRepository: NotificationLogRepository

) {
private val logger = LoggerFactory.getLogger(javaClass)
/**
* Envoie une notification via le canal spécifié
*/

fun sendNotification(

channel: NotificationChannel,

recipient: String,

subject: String,

content: String

) {

logger.info("Sending $channel notification to $recipient")

// Pattern Factory : sélectionner le bon sender

val sender = notificationSenders.firstOrNull {
it.getSupportedChannel() == channel

} ?: run {
logger.error("No sender found for channel $channel")
logFailure(channel, recipient, subject, "No sender available for this

channel")

return

}

// Vérifier la disponibilité

if (!sender.isAvailable()) {
logger.warn("Sender for $channel is not available")
logFailure(channel, recipient, subject, "Sender unavailable")
return

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43 11/28 4 - Architecture Modulaire et Découplage

// Envoi
try {
sender.send(recipient, subject, content)
logSuccess(channel, recipient, subject)
} catch (e: Exception) {
logger.error("Failed to send $channel notification to $recipient", e)
logFailure(channel, recipient, subject, e.message ?: "Unknown error")
}
}
private fun logSuccess(
channel: NotificationChannel,
recipient: String,
subject: String
) {
val log = NotificationLog(
channel = channel,
recipient = recipient,
subject = subject,
status = "SUCCESS",
errorMessage = null,
sentAt = Instant.now()
)
logRepository.save(log)
}
private fun logFailure(
channel: NotificationChannel,
recipient: String,
subject: String,
errorMessage: String
) {
val log = NotificationLog(
channel = channel,
recipient = recipient,
subject = subject,
status = "FAILED",
errorMessage = errorMessage,
sentAt = Instant.now()
)
logRepository.save(log)
}
/**
* Récupere l'historique des notifications pour un destinataire
*/
fun getNotificationHistory(recipient: String): List<NotificationLog> {
return logRepository.findByRecipientOrderBySentAtDesc(recipient)
}

3.5 Entité NotificationLog

package com.ecommerce.notification.domain

import jakarta.persistence.*

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

import java.time.Instant
import java.util.*

@Entity
@Table(name = "notification logs")
class NotificationLog(

@Id

@GeneratedValue(strategy = GenerationType.UUID)
var id: UUID? = null,
@Enumerated(EnumType.STRING)
@Column(nullable = false)

val channel: NotificationChannel,
@Column(nullable = false)

val recipient: String,
@Column(nullable = false)

val subject: String,

@Column(nullable = false)

val status: String, // SUCCESS, FAILED
@Column(length = 1000)

val errorMessage: String?,
@Column(nullable = false)

val sentAt: Instant

)

enum class NotificationChannel {
EMAIL,
SMS,
PUSH

package com.ecommerce.notification.repository

import com.ecommerce.notification.domain.NotificationLog
import org.springframework.data.jpa.repository.JpaRepository
import org.springframework.stereotype.Repository

import java.util.*

@Repository

interface NotificationLogRepository : JpaRepository<NotificationLog, UUID> {
fun findByRecipientOrderBySentAtDesc(recipient: String): List<NotificationLog>

}
Partie 4 : Listener d'événements (30min)

4.1 OrderNotificationListener

package com.ecommerce.notification.listener

import com.ecommerce.notification.domain.NotificationChannel

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43 13/28 4 - Architecture Modulaire et Découplage

import com.ecommerce.notification.service.NotificationService

import com.ecommerce.order.event.OrderCreatedEvent

import org.slf4j.LoggerFactory

import org.springframework.scheduling.annotation.Async

import org.springframework.stereotype.Component

import org.springframework.transaction.event.TransactionalEventListener
import org.springframework.transaction.event.TransactionPhase

import java.math.BigDecimal

/**

* Ecoute les événements OrderCreatedEvent et envoie des notifications

*

* @TransactionalEventListener : attend le COMMIT de la transaction
* @Async : traitement asynchrone (ne bloque pas la réponse HTTP)

*/

@Component
class OrderNotificationListener(

) {

private val notificationService: NotificationService

private val logger = LoggerFactory.getlLogger(javaClass)
/**
* Gere 1'événement de création de commande
* Phase AFTER COMMIT : exécuté APRES le commit de la transaction
*/
@Async
@TransactionalEventListener(phase = TransactionPhase.AFTER COMMIT)
fun handleOrderCreated(event: OrderCreatedEvent) {
logger.info("Received OrderCreatedEvent for order ${event.orderId}")
try {
// Envoi de la notification email
notificationService.sendNotification(
channel = NotificationChannel.EMAIL,
recipient = event.userEmail,
subject = "Order Confirmation #${event.orderId}",
content = buildEmailContent (event)
)
} catch (e: Exception) {
// Si 1'email échoue, la commande reste créée
logger.error("Failed to send notification for order ${event.orderId}",

}
}

private fun buildEmailContent(event: OrderCreatedEvent): String {
val html = StringBuilder()
html.append("<!DOCTYPE html>")
html.append("<html><head><meta charset='UTF-8'></head><body>")
html.append("<hl>0rder Confirmation</hl>")
html.append("<p>Thank you for your order!</p>")
html.append("<p>0rder ID: ${event.orderId}</p>")
html.append("<p>0rder Date: ${event.createdAt}</p>")
html.append("<h2>0rder Details</h2>")
html.append("<table border='1"' cellpadding='10' cellspacing='0"'>")
html.append("<tr><th>Product</th><th>Quantity</th><th>Unit

Price</th><th>Total</th></tr>")

event.items.forEach { item ->
val itemTotal = item.unitPrice.multiply(BigDecimal(item.quantity))

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12

eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

}

html.append("<tr>")
html.append("<td>${item.productName}</td>")
html.append("<td>${item.quantity}</td>")
html.append("<td>€${item.unitPrice}</td>")
html.append("<td>€$itemTotal</td>")
html.append("</tr>")

html.append("</table>")

html.append("<p>Thank you for your order!</p>")

(

html.append("<p>Total Amount: €${event.totalAmount}</p>")
(
(

html.append("</body></html>")
return html.toString()

4.2 Configuration pour @Async

package com.ecommerce.notification.config

import org.springframework.context.annotation.Configuration
import org.springframework.scheduling.annotation.EnableAsync

@Configuration

@EnableAsync

class NotificationConfig {
// Configuration par défaut de Spring pour @Async

// Un ThreadPoolTaskExecutor sera créé automatiquement

4.3 Configuration des propriétés

application-dev.properties
notification.email.enabled=false # Console en dev

application-test.properties
notification.email.enabled=false # Console en test

application-prod.properties
notification.email.enabled=true # Vrai email en prod

Configuration Spring Mail (seulement si enabled=true)

spring.
spring.
spring.
spring.
spring.
spring.

mail.
mail.
mail.
.password=${SMTP_PASSWORD}
mail.
mail.

mail

host=smtp.gmail.com
port=587
username=${SMTP_USERNAME}

properties.mail.smtp.auth=true
properties.mail.smtp.starttls.enable=true

http://slamwiki2.kobject.net/

Printed on 2026/01/30 21:43

2026/01/30 21:43 15/28 4 - Architecture Modulaire et Découplage

Partie 5 : Tests du systeme découplé (1h)

5.1 Test unitaire du NotificationService

package com.ecommerce.notification.service

import com.ecommerce.notification.domain.NotificationChannel

import com.ecommerce.notification.repository.NotificationLogRepository
import com.ecommerce.notification.service.sender.NotificationSender
import io.mockk.*

import org.assertj.core.api.Assertions.*

import org.junit.jupiter.api.BeforeEach

import org.junit.jupiter.api.DisplayName

import org.junit.jupiter.api.Test

@isplayName("NotificationService - Unit Tests")
class NotificationServiceTest {
private lateinit var logRepository: NotificationLogRepository
private lateinit var emailSender: NotificationSender
private lateinit var smsSender: NotificationSender
private lateinit var notificationService: NotificationService
@BeforeEach
fun setUp() {
logRepository = mockk(relaxed = true)
emailSender = mockk()
smsSender = mockk()
every { emailSender.getSupportedChannel() } returns
NotificationChannel.EMAIL
every { smsSender.getSupportedChannel() } returns NotificationChannel.SMS
notificationService = NotificationService(
notificationSenders = 1istOf(emailSender, smsSender),
logRepository = logRepository
)

}
@Test

@isplayName("Should send notification when sender is available")
fun “sendNotification with available sender should send successfully () {
// Given
every { emailSender.isAvailable() } returns true
every { emailSender.send(any(), any(), any()) } just Runs
// When
notificationService.sendNotification(
NotificationChannel.EMAIL,
"test@example.com",
"Test Subject",
"Test Content"
)

// Then
verify(exactly = 1) {

emailSender.send("test@example.com", "Test Subject", "Test Content")
}

verify(exactly = 1) {

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

logRepository.save(match { it.status == "SUCCESS" })

}
}
@Test
@isplayName("Should log failure when sender throws exception")
fun “sendNotification when sender fails should log error () {
// Given
every { emailSender.isAvailable() } returns true
every { emailSender.send(any(), any(), any()) } throws
RuntimeException("SMTP error")
// When
notificationService.sendNotification(
NotificationChannel.EMAIL,
"test@example.com",
"Test",
"Content"
)
// Then
verify(exactly = 1) {
logRepository.save(match {

it.status == "FAILED" && it.errorMessage?.contains("SMTP error") ==

true
})
}
}
@Test
@isplayName("Should not send when no sender for channel")
fun “sendNotification with unsupported channel should log failure™ () {
// Given
// Pas de sender pour PUSH
// When
notificationService.sendNotification(
NotificationChannel.PUSH,
"test@example.com",
"Test",
"Content"
)
// Then
verify(exactly = 0) {
emailSender.send(any(), any(), any())
smsSender.send(any(), any(), any())
}
verify(exactly = 1) {
logRepository.save(match {
it.status == "FAILED" &&
it.errorMessage?.contains("No sender available") == true
})
}
}
@Test
@isplayName("Should not send when sender is unavailable")
fun “sendNotification when sender unavailable should log failure () {
// Given
every { emailSender.isAvailable() } returns false
// When
notificationService.sendNotification(

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43

17/28

4 - Architecture Modulaire et Découplage

NotificationChannel.EMAIL,
"test@example.com",

"Test",
"Content"
)
// Then
verify(exactly

anyString()) }

5.2 Test d'intégration avec capture d'événements

verify(exactly

0) { emailSender.send(anyString(), anyString(),

1) {

logRepository.save(match {
it.status == "FAILED" &&
it.errorMessage?.contains("unavailable") == true

}

package com.ecommerce.order.controller

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

com.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.
org.

ecommerce.order.event.0OrderCreatedEvent

assertj.core.api.Assertions.*
junit.jupiter.api.BeforeEach
junit.jupiter.api.DisplayName
junit.jupiter.api.Test
beans.factory.annotation.Autowired
boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc

springframework.
springframework.
springframework.
springframework.
springframework.

springframework

springframework.
springframework.
springframework.
springframework.
springframework.
springframework.

@SpringBootTest
@AutoConfigureMockMvc
@ActiveProfiles("test")
@Transactional
@isplayName("OrderController - Integration Tests with Events")

class OrderControllerEventIntegrationTest {

boot.test.context.SpringBootTest

boot.test.context.TestConfiguration

context.annotation.Bean
.context.annotation.Primary
context.event.EventListener

http.MediaType

test.context.ActiveProfiles
test.web.servlet.MockMvc
test.web.servlet.post

transaction.annotation.Transactional

@Autowired

private lateinit var mockMvc: MockMvc

@Autowired

private lateinit var testEventlListener: TestEventListener
@BeforeEach

fun setUp() {
testEventListener.reset()

}

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

@Test
@DisplayName("POST /orders should publish OrderCreatedEvent")
fun “createOrder should publish event after successful creation () {

// Given
val orderRequest = """
{
"userId": "${setupUserId()}",
"items": [
{
"productId": "${setupProductId()}",
"quantity": 2
}
|
}
""" trimIndent()
// When

mockMvc.post("/orders") {
contentType = MediaType.APPLICATION JSON
content = orderRequest
}.andExpect {
status { isCreated() }
}
// Then - Vérifier que 1'événement a été publié
Thread.sleep(500) // Attendre le traitement asynchrone
val events = testEventListener.getReceivedEvents()
assertThat (events).hasSize(1)
val event = events[0]
assertThat(event.userEmail) .isNotEmpty ()
assertThat(event.totalAmount).isGreaterThan(java.math.BigDecimal.ZERO)
assertThat (event.items).isNotEmpty()
}
private fun setupUserId(): String {
// Créer un utilisateur de test
// TODO: implémenter
return java.util.UUID.randomUUID().toString()
}
private fun setupProductId(): String {
// Créer un produit de test
// TODO: implémenter
return java.util.UUID.randomUUID().toString()

}
/**
* Configuration de test pour capturer les événements
*/
@TestConfiguration
class TestConfig {
@Bean
@Primary
fun testEventListener(): TestEventListener {
return TestEventListener()
}
}
/**
* Listener de test pour vérifier la publication d'événements
*/

class TestEventListener {

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43 19/28 4 - Architecture Modulaire et Découplage

private val receivedEvents = mutablelListOf<OrderCreatedEvent>()
@EventListener
fun handleEvent(event: OrderCreatedEvent) {

receivedEvents.add(event)
}
fun getReceivedEvents(): List<OrderCreatedEvent> = receivedEvents.tolList()
fun reset() {

receivedEvents.clear()

}

5.3 Test unitaire du Listener

package com.ecommerce.notification.listener

import com.ecommerce.notification.domain.NotificationChannel
import com.ecommerce.notification.service.NotificationService
import com.ecommerce.order.event.OrderCreatedEvent

import io.mockk.*

import org.junit.jupiter.api.BeforeEach

import org.junit.jupiter.api.DisplayName

import org.junit.jupiter.api.Test

import java.math.BigDecimal

import java.util.*

@isplayName("OrderNotificationListener - Unit Tests")
class OrderNotificationlListenerTest {
private lateinit var notificationService: NotificationService
private lateinit var listener: OrderNotificationListener
@BeforeEach
fun setUp() {
notificationService = mockk(relaxed = true)
listener = OrderNotificationListener(notificationService)
}
@Test
@DisplayName("Should send email notification when order is created")
fun “handleOrderCreated should send email notification () {
// Given
val event = OrderCreatedEvent(
source = this,
orderId = UUID.randomUUID(),
userId = UUID.randomUUID(),
userEmail = "customer@example.com",
totalAmount = BigDecimal.valueOf(100.00),
items = emptyList()
)
// When
listener.handleOrderCreated(event)
// Then
verify(exactly = 1) {
notificationService.sendNotification(
NotificationChannel.EMAIL,

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

"customer@example.com",
match { it.contains("Order Confirmation") 1},
any ()

}
}
@Test
@isplayName("Should include order details in email content")
fun “handleOrderCreated should include all order information () {
// Given
val orderId = UUID.randomUUID()
val event = OrderCreatedEvent (
source = this,
orderld = orderld,
userId = UUID.randomUUID(),
userEmail = "customer@example.com",
totalAmount = BigDecimal("250.00"),
items = listOf(
OrderCreatedEvent.OrderItemInfo("Product A", 2,
BigDecimal("100.00")),
OrderCreatedEvent.OrderItemInfo("Product B", 1,
BigDecimal("50.00"))
)
)
// When
listener.handleOrderCreated(event)
// Then
verify {
notificationService.sendNotification(
NotificationChannel.EMAIL,
"customer@example.com",
any(),
match { content ->
content.contains(orderId.toString()) &&
content.contains("Product A") &&
content.contains("Product B") &&
content.contains("250.00")

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43 21/28 4 - Architecture Modulaire et Découplage

Partie 6 : Extension - Ajout d'un nouveau canal (SMS) (20min -
Bonus)

Challenge : Ajouter un canal SMS sans modifier le code existant (principe Open/Closed)

package com.ecommerce.notification.service.sender

import com.ecommerce.notification.domain.NotificationChannel

import org.slf4j.LoggerFactory

import org.springframework.boot.autoconfigure.condition.ConditionalOnProperty
import org.springframework.stereotype.Component

@Component
@ConditionalOnProperty(
name = ["notification.sms.enabled"],
havingValue = "true"
)
class SmsNotificationSender : NotificationSender {
private val logger = LoggerFactory.getLogger(javaClass)
override fun send(recipient: String, subject: String, content: String) {
// Intégration avec Twilio, AWS SNS, etc.
logger.info("Sending SMS to $recipient: $content")
// Implémentation simplifiée pour la demo
}
override fun getSupportedChannel() = NotificationChannel.SMS
override fun isAvailable() = true

Points a noter :

e Aucune modification dans NotificationService
¢ Spring injecte automatiquement le nouveau sender
¢ Activation via configuration (notification.sms.enabled)

Récapitulatif : Architecture finale

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12

eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

notification \
g
OrderNotificationListener
uses
-
-
]
NotificationService
uses
Notmcgér?&nder
- - . / \\
- ! N\
s - [l A N
e 1 A N
4 I \
- , N
g] g] g]
EmailSender SmsSender ConsoleSender

order \ SO
A
] £
OrderController OrderCreatedEvent

uses

product \

g
ProductService

N Spring!
S}Ermg \Events

~

[] Pattern Strategy
[] Pattern Factory
] Extensible

~
~
~
~

] Aucune dépendance
vers notification

]

ApplicationEventPublisher

EI ‘

Partie 7 : Visualiser les emails avec MailPit (Bonus : 10min)

7.1 Ajouter Mailpit au docker-compose.yml

Ajouter ce service dans votre fichier docker-compose.yml :

mailpit:
image: axllent/mailpit:latest
container name: ecommerce-mailpit

ports:
"1025:1025" # SMTP
"8025:8025" # Web UI
networks:

- ecommerce-network

Démarrer Mailpit
docker-compose up -d mailpit

Vérifier que Mailpit est démarré
docker ps | grep mailpit

http://slamwiki2.kobject.net/

Printed on 2026/01/30 21:43

2026/01/30 21:43 23/28 4 - Architecture Modulaire et Découplage

7.2 Configuration Spring

Modifier le fichier src/main/resources/application-dev.properties:

Mailpit configuration

spring.mail.host=1localhost

spring.mail.port=1025

spring.mail.username=

spring.mail.password=
spring.mail.properties.mail.smtp.auth=Ffalse
spring.mail.properties.mail.smtp.starttls.enable=false

Notification settings
notification.email.enabled=true
notification.email.from=noreply@ecommerce-demo.com

Logs pour voir les envois
logging.level.org.springframework.mail=DEBUG

Modifier également src/test/resources/application-test.properties:

Mailpit pour les tests
spring.mail.host=1localhost
spring.mail.port=1025

notification.email.enabled=true
notification.email.from=test@ecommerce-demo.com

7.3 Améliorer les logs dans EmailNotificationSender

Modifier la méthode send () dans EmailNotificationSender.kt :

override fun send(recipient: String, subject: String, content: String) {
try {
val message = mailSender.createMimeMessage()
val helper = MimeMessageHelper(message, true, "UTF-8")
helper.setFrom(fromEmail)
helper.setTo(recipient)
helper.setSubject(subject)
helper.setText(content, true)
mailSender.send(message)
logger.info("[J Email sent to: $recipient - Subject: $subject")
logger.info("[] View in Mailpit: http://localhost:8025")
} catch (e: Exception) {
logger.error("[] Failed to send email to $recipient", e)
throw RuntimeException("Email sending failed", e)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

7.4 Test manuel

1. Démarrer Mailpit (si pas déja fait)
docker-compose up -d mailpit

2. Lancer l'application avec le profil dev
mvn spring-boot:run -P dev

3. Créer une commande pour déclencher 1'envoi d'email
curl -X POST http://localhost:8080/api/orders \
-H "Content-Type: application/json" \
-d '{
"customerId": 1,
"customerEmail": "test@example.com",
"items": [
{
"productId": 1,
"quantity": 2,
"price": 29.99
}
]
} 1

7.4 Ouvrir l'interface Mailpit
open http://localhost:8025
Ou dans votre navigateur : http://localhost:8025

. Ouvrir http://localhost:8025 dans votre navigateur
. Vérifier qu'un email apparait dans la liste

. Cliquer sur l'email pour voir son contenu

. Vérifier que le contenu HTML est correct

. Vérifier le sujet : "Order Confirmation #XXX"

. Vérifier les détails de la commande dans 1'email

7.5 Interface Mailpit

L'interface web de Mailpit (http://localhost:8025) permet de :

¢ Voir tous les emails envoyés
Rechercher dans les emails
Prévisualiser le HTML et le texte brut
Voir les piéces jointes
Supprimer les emails

Tester le responsive design des emails

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43 25/28 4 - Architecture Modulaire et Découplage

7.6 Configuration pour la production

spring.mail.host=1localhost
spring.mail.port=1025
notification.email.enabled=true

En production (SMTP réel - exemple avec Gmail) :

spring.mail.host=smtp.gmail.com

spring.mail.port=587
spring.mail.username=${SMTP_ USERNAME}
spring.mail.password=${SMTP_PASSWORD}
spring.mail.properties.mail.smtp.auth=true
spring.mail.properties.mail.smtp.starttls.enable=true

notification.email.enabled=true
notification.email.from=${EMAIL FROM}

Bonnes pratiques :

Ne jamais commiter les credentials SMTP dans le code
Utiliser des variables d'environnement

Activer TLS/SSL en production

Utiliser des app passwords (Gmail, Outlook, etc.)

7.7 Commandes utiles

Démarrer uniquement Mailpit
docker-compose up -d mailpit

Voir les logs de Mailpit
docker logs -f ecommerce-mailpit

Redémarrer Mailpit
docker-compose restart mailpit

Arréter Mailpit
docker-compose stop mailpit

Supprimer le conteneur Mailpit
docker-compose down mailpit

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

7.8 Dépannage

Probleme : Les emails n'apparaissent pas dans Mailpit

1. Vérifier que Mailpit est démarré
docker ps | grep mailpit

2. Vérifier les logs de l'application
Rechercher : "Email sent to:" ou "Failed to send email"

3. Vérifier que le profil dev est actif
Dans les logs au démarrage : "The following profiles are active: dev"

4. Tester la connexion SMTP
telnet localhost 1025

Probléme : “Connection refused” sur le port 1025

Vérifier que le port 1025 n'est pas déja utilisé
lsof -i :1025

Si occupé, changer le port dans docker-compose.yml et application-dev.properties

Livrables attendus

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

2026/01/30 21:43 27/28 4 - Architecture Modulaire et Découplage

Concepts clés a retenir

Ressources

¢ Spring Events Documentation

e Refactoring Guru - Design Patterns

e Martin Fowler - Event-Driven Architecture
¢ Baeldung - Spring Events

¢ Spring @Async Documentation

e MockK Documentation

¢ Kotlin Data Classes

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://docs.spring.io/spring-framework/reference/core/beans/context-introduction.html#context-functionality-events
https://refactoring.guru/design-patterns/catalog
https://martinfowler.com/articles/201701-event-driven.html
https://www.baeldung.com/spring-events
https://docs.spring.io/spring-framework/reference/integration/scheduling.html#scheduling-annotation-support-async
https://mockk.io/
https://kotlinlang.org/docs/data-classes.html

Last update: 2025/11/10 16:12 eadl:bloc3:dev_av:td4 http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

Last update: 2025/11/10 16:12

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:43

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/dev_av/td4?rev=1762787546

	4 - Architecture Modulaire et Découplage
	Objectifs pédagogiques
	Contexte : User Story
	Partie 0 : État des lieux - Le piège du couplage fort (20min)
	0.1 Implémentation naïve (anti-pattern)
	0.2 Problèmes identifiés
	0.3 Objectif de la séance

	Partie 1 : Réorganisation en packages par domaine (30min)
	1.1 Structure modulaire proposée
	1.2 Exercice de refactoring

	Partie 2 : Spring Events pour le découplage (1h)
	2.1 Création de l'événement métier
	2.2 Publication de l'événement dans OrderService
	2.3 Avantages de cette approche

	Partie 3 : Pattern Strategy pour les canaux de notification (1h)
	3.1 Interface NotificationSender
	3.2 Implémentation Console (pour dev/test)
	3.3 Implémentation Email (pour prod)
	3.4 NotificationService avec Injection des senders
	3.5 Entité NotificationLog

	Partie 4 : Listener d'événements (30min)
	4.1 OrderNotificationListener
	4.2 Configuration pour @Async
	4.3 Configuration des propriétés

	Partie 5 : Tests du système découplé (1h)
	5.1 Test unitaire du NotificationService
	5.2 Test d'intégration avec capture d'événements
	5.3 Test unitaire du Listener

	Partie 6 : Extension - Ajout d'un nouveau canal (SMS) (20min - Bonus)
	Récapitulatif : Architecture finale
	Partie 7 : Visualiser les emails avec MailPit (Bonus : 10min)
	7.1 Ajouter Mailpit au docker-compose.yml
	7.2 Configuration Spring
	7.3 Améliorer les logs dans EmailNotificationSender
	7.4 Test manuel
	7.5 Interface Mailpit
	7.6 Configuration pour la production
	7.7 Commandes utiles
	7.8 Dépannage

	Livrables attendus
	Priorités (4h)
	Bonus (si temps)

	Concepts clés à retenir
	Design Patterns appliqués
	Principes SOLID
	Architecture

	Ressources

