
2026/01/30 00:54 1/5 Présentation XP

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Présentation XP

Introduction

Les piliers de l’eXtreme Programming (XP) reposent sur des mécanismes clés pour :

Optimiser l’efficacité des équipes (pair programming, intégration continue, etc.),
Raccourcir les boucles de feedback (livraisons fréquentes, tests automatisés, rétrospectives),
Fluidifier les releases (déploiement continu, petites itérations incrémentales),
Renforcer la collaboration client (user stories, planification adaptative, démonstrations régulières).

La maîtrise de XP passe par une compréhension hiérarchisée :

Ses Valeurs (communication, simplicité, feedback, courage, respect) → fondations culturelles.
Ses Principes (ex : “Embrasser le changement”, “Livrer de la valeur rapidement”) → cadrage stratégique
pour choisir/adapter les pratiques.
Ses Pratiques (TDD, refactoring, CI/CD, velocity tracking, etc.) → outils concrets pour implémenter les
principes.

Adaptation contextuelle :

XP n’est pas un framework rigide. Certaines pratiques (ex : pair programming) peuvent être ajustées ou
combinées (avec Scrum/Kanban) selon :

La taille de l’équipe (startup vs. scale-up),
La criticité du projet (MVP vs. système embarqué),
La maturité technique (legacy code vs. greenfield).

XP Agile DevOps TDD Clean code

Valeurs XP

Les valeurs XP (eXtreme Programming) définissent la culture et les comportements clés pour des équipes
agiles et techniques.

Tableau des Valeurs XP

Valeur Définition Technique

Communication

Échanges structurés pour :
- *Knowledge sharing* : mob programming, docs collaboratives (ex : Confluence/Notion).
- *Résolution de problèmes* : stand-ups techniques, canaux dédiés (Slack/Teams).
- *Coordination* : planning poker, raffinement de backlog.

Simplicité

Approche minimaliste :
- *YAGNI* : “You Aren’t Gonna Need It” → pas de sur-ingénierie.
- *DTSTTCPW* : “Do The Simplest Thing That Could Possibly Work”.
- *Refactoring* : incrémental (ex : *boy scout rule*).

Feedback

Boucles courtes et automatisées :
- *Tests* : TDD/BDD (feedback en ms).
- *Démos* : Sprint reviews (validation client en jours).
- *Rétros* : Amélioration continue des processus.



Last update: 2025/11/23 14:48 eadl:bloc3:xp:chap1 http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1

http://slamwiki2.kobject.net/ Printed on 2026/01/30 00:54

Valeur Définition Technique

Courage

Décisions techniques audacieuses :
- Remettre en question les choix (ex : “Ce framework est-il adapté ?”).
- *Fail fast* : Spikes pour valider des hypothèses avant le dev.
- *Blameless culture* : Postmortems sans jugement.

Respect

Collaboration bienveillante :
- *Pair programming* : Montée en compétence (juniors/seniors).
- *Code reviews* : Focus sur l’amélioration, pas la critique.
- *Retros actionables* : Écoute active des feedbacks.

Principes XP

Les principes XP servent de pont entre les valeurs et les pratiques. Ils expliquent pourquoi certaines
pratiques (comme le TDD ou le pair programming) sont efficaces, et comment les adapter à différents contextes
techniques.

1. Humanity

Pourquoi ? Des développeurs épanouis = code de meilleure qualité.

Aspect Définition Impact Concret Outils/Pratiques

Sécurité
psychologique

Environnement où on ose
poser des questions sans
jugement.

➔ -30% de *knowledge loss*
(turnover réduit).

- 1:1s réguliers (template
structuré).

Autonomie
Liberté de choisir comment
résoudre un problème
technique.

➔ +25% de productivité (moins
de micro-management).

- Objectifs SMART (OKRs
techniques).

Reconnaissance
Visibilité des contributions
techniques (ex : refactor,
tests).

➔ +40% d'engagement
(enquêtes internes).

- Kudos Slack / Bonus
techniques.

2. Economics

Pourquoi ? Toute décision technique doit se justifier par sa valeur business.

Critère Exemple Technique Bénéfice Business Outils

Coût vs. Valeur Migration vers Kubernetes : 3 sprints
vs. gain de scalabilité.

➔ ROI calculé : économie de
20% sur les coûts cloud.

- Business Case
Template.

Dette Technique Refactor d'un module legacy (5j) vs.
risque de *firefighting*. ➔ Évite 10j de hotfixes/an. - SonarQube (coût de

la dette).

Priorisation Feature A (valeur client élevée) vs.
Feature B (technically cool).

➔ Focus sur ce qui génère
du revenue.

- User Story Mapping
(Miro).

3. Mutual Benefit

Pourquoi ? Les pratiques XP doivent avantage à la fois les devs et le business.

Pratique Bénéfice Devs Bénéfice Business Exemple
TDD Code plus simple à maintenir. ➔ -40% de bugs en production. - JUnit / pytest.
CI/CD Feedback immédiat sur les changements. ➔ Livraisons 5x plus fréquentes. - GitHub Actions.
Clean Code Onboarding des nouveaux plus rapide. ➔ -30% de temps passé en reviews. - ESLint / Prettier.



2026/01/30 00:54 3/5 Présentation XP

SlamWiki 2.1 - http://slamwiki2.kobject.net/

4. Self-Similarity

Pourquoi ? Réutiliser des solutions éprouvées, mais adapter au contexte.

Contexte Solution Réutilisable Adaptation Nécessaire Outil

Microservices Pattern *Strangler Fig* pour
découper un monolithe.

Vérifier la compatibilité avec le
legacy.

- ADR (Architecture
Decision Records).

Tests Structure *Given/When/Then* pour
les tests. Adapter aux spécificités métiers. - Cucumber / SpecFlow.

Code Reviews Checklist standardisée. Ajouter des critères projet-
spécifiques. - GitHub PR Templates.

5. Improvement (Kaizen)

Pourquoi ? L'excellence vient de petites améliorations continues.

Niveau Action Impact Metric
Code +1% de couverture de tests par sprint. ➔ -15% de régressions. - SonarQube.
Processus Réduire le *lead time* de 10%. ➔ Livraisons plus prévisibles. - DORA Metrics.
Équipe Rétrospective hebdomadaire. ➔ +20% de satisfaction d'équipe. - Officevibe.

6. Diversity

Pourquoi ? Des équipes diversifiées = meilleures solutions techniques.

Type de Diversité Exemple Bénéfice Technique Pratique

Compétences Backend + DevOps dans la
même équipe.

➔ Solutions full-stack
optimisées. - Pair Programming rotatif.

Expérience Juniors + Seniors sur un spike
technique. ➔ Innovation + rigueur. - Mentorat inverse.

Perspectives Brainstorming avec des non-
techniques. ➔ UX/UI plus réalistes. - Workshops cross-

fonctionnels.

7. Reflection

Pourquoi ? Apprendre de chaque action pour s'améliorer.

Type Format Exemple Outil
Rétrospective Mad/Sad/Glad. “Pourquoi ce bug a passé les tests ?” - Retrium.
Postmortem Blameless (sans culpabilité). Analyse d'un incident de prod. - Google Docs Template.
Code Review Feedback structuré. “Pourquoi ce PR a pris 3 jours ?” - GitHub PR Comments.

8. Flow

Pourquoi ? Un flux de travail fluide = livraisons plus rapides.

Obstacle Solution Impact Outil

Blocages WIP Limits (max 2 tâches en
cours). ➔ -50% de *context switching*. - Kanban Board.

Dépendances User stories plus petites. ➔ Livraisons incrémentales. - Story Splitting
Techniques.

Feedback Lent CI/CD avec tests automatisés. ➔ Feedback en <10 min. - GitHub Actions.



Last update: 2025/11/23 14:48 eadl:bloc3:xp:chap1 http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1

http://slamwiki2.kobject.net/ Printed on 2026/01/30 00:54

9. Opportunity

Pourquoi ? Transformer les problèmes en opportunités d'apprentissage.

Problème Opportunité Action Exemple
Bug Critique Améliorer la suite de tests. Ajouter des tests E2E. - Cypress.
Dette Technique Moderniser le code. Spike pour évaluer les options. - Tech Radar.
Conflit d'équipe Renforcer la collaboration. Atelier de team building technique. - Mob Programming.

10. Redundancy

Pourquoi ? Certaines redondances sont utiles, pas du *waste*.

Type Exemple Bénéfice Outil

Tests Tests unitaires + intégration pour
un module critique. ➔ Couverture à 95%. - Jest / Pytest.

Documentation README + docs dans le code +
wiki.

➔ Onboarding en 1j vs 1
semaine. - Markdown / Confluence.

Reviews 2 approvers pour les PRs critiques. ➔ 0 bug en prod sur 6 mois. - GitHub Protected
Branches.

11. Failure

Pourquoi ? L'échec est une source d'apprentissage, pas une honte.

Type d'Échec Leçon Apprise Action Corrective Outil
Déploiement Raté Pipeline CI/CD trop lent. Optimiser les étapes de build. - GitHub Actions Cache.
Bug en Prod Tests E2E manquants. Ajouter des tests de non-régression. - Selenium.
Estimation Fausse User story mal découpée. Utiliser le *Story Splitting*. - Planning Poker.

12. Quality

Pourquoi ? La qualité n'est pas négociable - c'est un multiplicateur.

Pratique Critère Impact Outil

Clean Code Fonctions <20 lignes, noms
explicites. ➔ -40% de temps en reviews. - ESLint / SonarQube.

TDD 100% de couverture pour le code
critique.

➔ 0 régression sur les
features core. - JUnit / pytest.

Definition of Done Checklist stricte (tests, docs,
reviews). ➔ Livraisons prévisibles. - Jira DoD.

13. Baby Steps

Pourquoi ? Des petites étapes = moins de risques, plus de succès.

Contexte Action Bénéfice Exemple

Legacy Code Ajouter des tests sur 1 module à la
fois. ➔ Refactor sécurisé. - Approach: Strangler Fig.

Nouvelle Feature Découper en sous-tâches <1j. ➔ Livraison en 3 sprints
vs 1. - User Story Splitting.



2026/01/30 00:54 5/5 Présentation XP

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Contexte Action Bénéfice Exemple

Apprentissage Spike de 2h pour évaluer une
techno. ➔ Décision éclairée. - Timeboxed Research.

14. Accepted Responsibility

Pourquoi ? La responsabilité se prend, ne s'assigne pas.

Pratique Responsabilité Impact Outil
TDD Le dev écrit aussi les tests. ➔ Code testé à 100%. - JUnit / pytest.

On-Call Rotation volontaire. ➔ Résolution plus rapide des
incidents. - PagerDuty.

Code Ownership Un dev “possède” une feature de
bout en bout.

➔ Moins de *handovers*
problématiques. - Feature Flags.

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1

Last update: 2025/11/23 14:48

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1

	Présentation XP
	Introduction
	Valeurs XP
	Tableau des Valeurs XP

	Principes XP
	1. Humanity
	2. Economics
	3. Mutual Benefit
	4. Self-Similarity
	5. Improvement (Kaizen)
	6. Diversity
	7. Reflection
	8. Flow
	9. Opportunity
	10. Redundancy
	11. Failure
	12. Quality
	13. Baby Steps
	14. Accepted Responsibility




