
2026/02/12 10:40 1/5 Présentation XP

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Présentation XP

Introduction

Les piliers de l’eXtreme Programming (XP) reposent sur des mécanismes clés pour :

Optimiser l’efficacité des équipes (pair programming, intégration continue, etc.),
Raccourcir les boucles de feedback (livraisons fréquentes, tests automatisés, rétrospectives),
Fluidifier les releases (déploiement continu, petites itérations incrémentales),
Renforcer la collaboration client (user stories, planification adaptative, démonstrations régulières).

La maîtrise de XP passe par une compréhension hiérarchisée :

Ses Valeurs (communication, simplicité, feedback, courage, respect) → fondations culturelles.
Ses Principes (ex : “Embrasser le changement”, “Livrer de la valeur rapidement”) → cadrage stratégique
pour choisir/adapter les pratiques.
Ses Pratiques (TDD, refactoring, CI/CD, velocity tracking, etc.) → outils concrets pour implémenter les
principes.

Adaptation contextuelle :

XP n’est pas un framework rigide. Certaines pratiques (ex : pair programming) peuvent être ajustées ou
combinées (avec Scrum/Kanban) selon :

La taille de l’équipe (startup vs. scale-up),
La criticité du projet (MVP vs. système embarqué),
La maturité technique (legacy code vs. greenfield).

XP Agile DevOps TDD Clean code

Valeurs XP

Les valeurs XP (eXtreme Programming) définissent la culture et les comportements clés pour des équipes
agiles et techniques.

Tableau des Valeurs XP

Valeur Définition Technique

Communication

Échanges structurés pour :
- *Knowledge sharing* : mob programming, docs collaboratives (ex : Confluence/Notion).
- *Résolution de problèmes* : stand-ups techniques, canaux dédiés (Slack/Teams).
- *Coordination* : planning poker, raffinement de backlog.

Simplicité

Approche minimaliste :
- *YAGNI* : “You Aren’t Gonna Need It” → pas de sur-ingénierie.
- *DTSTTCPW* : “Do The Simplest Thing That Could Possibly Work”.
- *Refactoring* : incrémental (ex : *boy scout rule*).

Feedback

Boucles courtes et automatisées :
- *Tests* : TDD/BDD (feedback en ms).
- *Démos* : Sprint reviews (validation client en jours).
- *Rétros* : Amélioration continue des processus.



Last update: 2025/11/23 12:29 eadl:bloc3:xp:chap1 http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1?rev=1763897386

http://slamwiki2.kobject.net/ Printed on 2026/02/12 10:40

Valeur Définition Technique

Courage

Décisions techniques audacieuses :
- Remettre en question les choix (ex : “Ce framework est-il adapté ?”).
- *Fail fast* : Spikes pour valider des hypothèses avant le dev.
- *Blameless culture* : Postmortems sans jugement.

Respect

Collaboration bienveillante :
- *Pair programming* : Montée en compétence (juniors/seniors).
- *Code reviews* : Focus sur l’amélioration, pas la critique.
- *Retros actionables* : Écoute active des feedbacks.

Principes XP

Les principes XP servent de pont entre les valeurs et les pratiques. Ils expliquent pourquoi certaines
pratiques (comme le TDD ou le pair programming) sont efficaces, et comment les adapter à différents contextes
techniques.

Tableau des Principes XP

Principe Définition Technique Applications Concrètes Outils/Exemples

Humanity

Bien-être et croissance des
devs :

➔ Réduit le turnover (équipes
stables = moins de *knowledge
loss*).

- 1:1s réguliers (feedback
constructif).

- Sécurité psychologique
(*psychological safety*) pour
oser poser des questions.

➔ Améliore la collaboration
(moins de *silos*).

- Retrospectives
anonymes (ex : Toolbox).

- Satisfaction via l’autonomie
et l’impact visible du travail.

➔ Boost la productivité (devs
engagés = moins de
*procrastination*).

- Tableaux de
reconnaissance (ex :
kudos Slack).

Economics

Alignement avec la valeur
métier :

➔ Priorise les features à fort
ROI (évite le *waste*).

- User Story Mapping (ex
: Miro).

- Toute décision technique doit
être évaluée en termes de
coût vs. valeur business.

➔ Optimise les coûts
d’infrastructure (ex : serverless
vs. bare metal).

- Coût de la dette
technique (ex :
SonarQube).

- Exemple : *“Ce refactor vaut-
il 2 sprints si le gain métier est
nul ?”*.

➔ Justifie les investissements
techniques (ex : migration vers
Kubernetes).

- Business Case
Templates.

Mutual Benefit

Pratiques gagnant-gagnant
pour l’équipe et le business :

➔ Code plus maintenable =
moins de *firefighting*. - TDD (JUnit, pytest).

- Exemples : ➔ Livraisons plus fréquentes
= feedback client plus rapide.

- CI/CD (GitHub Actions,
GitLab CI).

- *Tests automatisés* : gain
temps pour les devs et qualité
pour le client.

➔ Réduction des bugs en prod
= moins de *hotfixes*.

- Clean Code (ESLint,
Prettier).

- *Code simple et lisible* :
maintenabilité et onboarding
facilité.



2026/02/12 10:40 3/5 Présentation XP

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Principe Définition Technique Applications Concrètes Outils/Exemples

Self-similarity

Réutilisation des solutions
avec adaptation contextuelle :

➔ Accélère le développement
(moins de *reinventing the
wheel*).

- Design Patterns (ex :
Strategy, Adapter).

- Un pattern qui marche dans
un micro-service peut inspirer
une solution dans un autre.

➔ Standardise les bonnes
pratiques (ex : conventions de
nommage).

- Architecture Decision
Records (ADR).

- Mais : chaque contexte est
unique (ex : *legacy code* vs.
*greenfield*).

➔ Évite les *cargo cults*
(copier-coller sans comprendre).

- Spikes techniques pour
valider l’adéquation.

Improvement

Amélioration continue
(kaizen) via des itérations
courtes :

➔ Qualité incrémentale (ex :
couverture de tests +1% par
sprint).

- TDD (red-green-refactor).

- Pas de perfectionnisme, mais
des petites améliorations
régulières.

➔ Processus optimisés (ex :
réduction du *lead time*).

- Rétrospectives
(Mad/Sad/Glad).

- Exemple : refactoring de 10%
du code à chaque PR.

➔ Culture d’apprentissage (ex
: *blameless postmortems*). - Metrics DevOps (DORA).

Diversity

Hétérogénéité des profils
comme force :

➔ Solutions plus innovantes
(ex : approche *junior* vs.
*senior*).

- Pair Programming
(rotatif).

- Compétences
complémentaires (ex :
*backend* + *DevOps*).

➔ Moins de *groupthink* (biais
de conformité).

- Workshops cross-
fonctionnels.

- Respect des opinions
divergentes (ex : *“Pourquoi
pas Serverless ?”*).

➔ Meilleure résolution de
problèmes (ex : *brainstorming
technique*).

- Tools collaboratifs (Miro,
Mural).

Reflection

Analyse post-action pour
capitaliser sur les expériences
:

➔ Évite de répéter les mêmes
erreurs (ex : *post-incident
reviews*).

- Rétrospectives
(Start/Stop/Continue).

- Exemples : ➔ Améliore les processus (ex :
ajustement des *DoD*).

- Journaux techniques (ex
: Notion, Confluence).

- *Rétrospectives* : “Pourquoi
ce bug a-t-il passé les tests ?”.

➔ Renforce la résilience
d’équipe.

- Metrics de qualité (ex :
Sentry pour les erreurs).

- *Code reviews* : “Pourquoi
ce PR a pris 3 jours ?”.

Flow

Fluidité du travail pour
minimiser les interruptions :

➔ Réduit le *cycle time* (ex :
de l’idée à la prod). - Kanban (Jira, Trello).

- Exemples : ➔ Limite le *multitasking*
(moins de *context switching*). - WIP Limits.

- *Intégration continue* :
feedback en minutes. ➔ Livraisons plus prévisibles. - CI/CD pipelines.

- *Petites user stories* : évite
les blocages longs.

Opportunity

Transformer les problèmes
en leviers :

➔ Innovation technique (ex :
migration vers un nouveau
langage).

- Spikes d’exploration.

- Exemples :
➔ Amélioration des
compétences (ex : formation
sur un nouveau tool).

- Hackathons internes.

- Un *bug critique* →
opportunité pour améliorer les
tests.

➔ Renforce la cohésion
d’équipe (résolution
collaborative).

- Blameless
Postmortems.

- Une *dette technique* →
occasion de refactor.



Last update: 2025/11/23 12:29 eadl:bloc3:xp:chap1 http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1?rev=1763897386

http://slamwiki2.kobject.net/ Printed on 2026/02/12 10:40

Principe Définition Technique Applications Concrètes Outils/Exemples

Redundancy

Duplication utile (vs.
*waste*) :

➔ Résilience du système (ex :
réplicas de bases de données). - Backup automatiques.

- Exemples : ➔ Sécurité (ex : double
vérification des PRs).

- Linters/Formatters
(redondance des checks).

- *Tests redondants* :
couverture multi-niveaux
(unitaires + intégration).

➔ Onboarding facilité (ex :
docs répétées dans plusieurs
formats).

- Documentation as Code
(ex : Markdown + CI).

- *Pair programming* : 2
paires d’yeux sur le même
code.

Failure

Apprentissage via l’échec :
➔ Culture de
l’expérimentation (ex :
*feature flags* pour tester en
prod).

- Feature Toggles
(LaunchDarkly).

- Exemples : ➔ Solutions plus robustes (ex
: *chaos engineering*). - Chaos Monkey (Netflix).

- Un *déploiement raté* →
amélioration du pipeline CI/CD.

➔ Équipe plus résiliente
(moins de peur de l’échec). - Postmortem Templates.

- Un *bug en prod* →
renforcement des tests E2E.

Quality

Non-négociable : la qualité
est un multiplicateur de
productivité.

➔ Moins de *technical debt*
(ex : code propre = moins de
*firefighting*).

- SonarQube (qualité de
code).

- Exemples : ➔ Meilleure vélocité à long
terme (moins de régressions). - TDD/BDD.

- *Clean Code* : noms de
variables explicites, fonctions
courtes.

➔ Fierté du travail (motivation
accrue). - Code Reviews strictes.

- *Tests automatisés* : 100%
de couverture pour le code
critique.

Baby Steps

Petites itérations pour
éviter les erreurs coûteuses :

➔ Réduit les risques (ex : *big
bang refactor* → *incremental
changes*).

- TDD (petits tests → petit
code).

- Exemples :
➔ Livraisons plus fréquentes
(ex : *trunk-based
development*).

- Feature Branches
courtes.

- *Test-First Programming* :
écrire un test avant le code.

➔ Feedback immédiat (ex :
*red-green-refactor*).

- Git hooks (pre-commit
tests).

- *Petites PRs* : max 200
lignes de code.

Accepted
Responsibility

Responsabilité active (vs.
assignée) :

➔ Ownership accru (ex : un dev
*possède* une feature de bout
en bout).

- User Story Assignment
(volontariat).

- Exemples :
➔ Qualité accrue (ex : *“Si je
code la feature, je teste aussi ses
edge cases”*).

- Definition of Done
(DoD) stricte.

- *TDD* : le dev qui écrit le
code écrit aussi les tests.

➔ Moins de *handovers*
problématiques.

- Pair Programming
(responsabilité partagée).

- *On-call* : rotation volontaire
pour la prod.



2026/02/12 10:40 5/5 Présentation XP

SlamWiki 2.1 - http://slamwiki2.kobject.net/

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1?rev=1763897386

Last update: 2025/11/23 12:29

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1?rev=1763897386

	Présentation XP
	Introduction
	Valeurs XP
	Tableau des Valeurs XP


	Principes XP
	Tableau des Principes XP



