2026/02/12 10:40 1/5 Présentation XP

Présentation XP

Introduction

Les piliers de I'eXtreme Programming (XP) reposent sur des mécanismes clés pour :

Optimiser I'efficacité des équipes (pair programming, intégration continue, etc.),

Raccourcir les boucles de feedback (livraisons fréquentes, tests automatisés, rétrospectives),
Fluidifier les releases (déploiement continu, petites itérations incrémentales),

Renforcer la collaboration client (user stories, planification adaptative, démonstrations réguliéres).

La maftrise de XP passe par une compréhension hiérarchisée :

¢ Ses Valeurs (communication, simplicité, feedback, courage, respect) - fondations culturelles.

¢ Ses Principes (ex : “Embrasser le changement”, “Livrer de la valeur rapidement”) - cadrage stratégique
pour choisir/adapter les pratiques.

» Ses Pratiques (TDD, refactoring, CI/CD, velocity tracking, etc.) - outils concrets pour implémenter les
principes.

Adaptation contextuelle :

XP n’est pas un framework rigide. Certaines pratiques (ex : pair programming) peuvent étre ajustées ou
combinées (avec Scrum/Kanban) selon :

e La taille de I'équipe (startup vs. scale-up),
e La criticité du projet (MVP vs. systéme embarqué),
¢ La maturité technique (legacy code vs. greenfield).

XP Agile DevOps TDD Clean code

Valeurs XP

Les valeurs XP (eXtreme Programming) définissent la culture et les comportements clés pour des équipes
agiles et techniques.

Tableau des Valeurs XP

Valeur Définition Technique

Echanges structurés pour :

- *Knowledge sharing* : mob programming, docs collaboratives (ex : Confluence/Notion).
- *Résolution de problemes* : stand-ups techniques, canaux dédiés (Slack/Teams).
- *Coordination* : planning poker, raffinement de backlog.

Approche minimaliste :

- *YAGNI* : “You Aren’t Gonna Need It” - pas de sur-ingénierie.

- *DTSTTCPW* : “Do The Simplest Thing That Could Possibly Work”.

- *Refactoring* : incrémental (ex : *boy scout rule*).

Boucles courtes et automatisées :

- *Tests* : TDD/BDD (feedback en ms).

- *Démos* : Sprint reviews (validation client en jours).

- *Rétros* : Amélioration continue des processus.

Communication

Simplicité

Feedback

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/23 12:29

eadl:bloc3:xp:chapl http://slamwiki2.kobject.net/eadl/bloc3/xp/chapl?rev=1763897386

Valeur

Définition Technique

Courage

Décisions techniques audacieuses :

- Remettre en question les choix (ex : “Ce framework est-il adapté ?").

- *Fail fast* : Spikes pour valider des hypothéses avant le dev.

- *Blameless culture* : Postmortems sans jugement.

Respect

Collaboration bienveillante

- *Pair programming* : Montée en compétence (juniors/seniors).

- *Code reviews* : Focus sur I'amélioration, pas la critique.

- ¥Retros actionables* : Ecoute active des feedbacks.

Principes XP

Les principes XP servent de pont entre les valeurs et les pratiques. lls expliquent pourquoi certaines
pratiques (comme le TDD ou le pair programming) sont efficaces, et comment les adapter a différents contextes

techniques.

Tableau des Principes XP

colut vs. valeur business.

vS. bare metal).

Principe Définition Technique Applications Concretes Outils/Exemples

Bien-étre et croissance des | Redm_t le lturnm:(er (equipes | 5,94 réguliers (feedback

) stables = moins de *knowledge >
devs : « constructif).
loss*).
. -*Secunte ps.ychologlq:je - Améliore la collaboration |- Retrospectives

Humanity (*psychological safety*) pour (moins de *silos*) anonymes (ex : Toolbox)

oser poser des questions. ' y ' ’

. . . . |> Boost la productivité (devs |- Tableaux de
- Satisfaction via I'autonomie PRI .)
et I'mpact visible du travail engagés = moins de reconnaissance (ex :
" |*procrastination*). kudos Slack).

Alignement avec la valeur |- Priorise les features a fort |- User Story Mapping (ex

métier : ROI (évite le *waste*). : Miro).

- Toute décision technique doit|> Optimise les colts - Colit de la dette
Economics étre évaluée en termes de d’infrastructure (ex : serverless|technique (ex :

SonarQube).

- Exemple : *“Ce refactor vaut-
il 2 sprints si le gain métier est
nul ?"*,

- Justifie les investissements
techniques (ex : migration vers
Kubernetes).

- Business Case
Templates.

Mutual Benefit

Pratiques gagnant-gagnant
pour I'équipe et le business :

- Code plus maintenable =
moins de *firefighting*.

- TDD (JUnit, pytest).

- Exemples :

- Livraisons plus fréquentes
= feedback client plus rapide.

- CI/CD (GitHub Actions,
GitLab Cl).

- *Tests automatisés* : gain
temps pour les devs et qualité
pour le client.

- Réduction des bugs en prod
= moins de *hotfixes*.

- Clean Code (ESLint,
Prettier).

- *Code simple et lisible* :
maintenabilité et onboarding
facilité.

http://slamwiki2.kobject.net/

Printed on 2026/02/12 10:40

2026/02/12 10:40

3/5

Présentation XP

Principe

Définition Technique

Applications Concretes

Outils/Exemples

Self-similarity

Réutilisation des solutions
avec adaptation contextuelle :

- Accélére le développement
(moins de *reinventing the
wheel*).

- Design Patterns (ex :
Strategy, Adapter).

- Un pattern qui marche dans
un micro-service peut inspirer
une solution dans un autre.

- Standardise les bonnes
pratiques (ex : conventions de
nommage).

- Architecture Decision
Records (ADR).

- Mais : chaque contexte est
unique (ex : *legacy code* vs.
greenfield).

> Evite les *cargo cults*
(copier-coller sans comprendre).

- Spikes techniques pour
valider I'adéquation.

Improvement

Amélioration continue
(kaizen) via des itérations
courtes :

- Qualité incrémentale (ex :
couverture de tests +1% par
sprint).

- TDD (red-green-refactor).

- Pas de perfectionnisme, mais
des petites améliorations
régulieres.

- Processus optimisés (ex :
réduction du *lead time*).

- Rétrospectives
(Mad/Sad/Glad).

- Exemple : refactoring de 10%
du code a chaque PR.

= Culture d’apprentissage (ex
: *blameless postmortems*).

- Metrics DevOps (DORA).

Hétérogénéité des profils
comme force :

- Solutions plus innovantes
(ex : approche *junior* vs.
senior).

- Pair Programming
(rotatif).

. . - Competences _ - Moins de *groupthink* (biais |- Workshops cross-
Diversity complémentaires (ex : de conformité) fonctionnels
backend + *DevOps*). ' '
- Respect des opinions - Meilleure résolution de _Tools collaboratifs (Miro
divergentes (ex : *“Pourquoi |problémes (ex : *brainstorming Mural) '
pas Serverless 7"*). technique*). '
Analyse post-action pour |> Evite de répéter les mémes - Rétrospectives
capitaliser sur les expériences |erreurs (ex : *post-incident (Start/Stc? /Continue)
: reviews*), P)
- Exemples : - Améliore les processus (ex : |- Journaux techniques (ex
Reflection ples: ajustement des *DoD¥*). : Notion, Confluence).
- *Rétrospectives* : “Pourquoi |> Renforce la résilience - Metrics de qualité (ex :
ce bug a-t-il passé les tests ?". |d’équipe. Sentry pour les erreurs).
- *Code reviews* : “Pourquoi
ce PR a pris 3 jours ?”.
Fluidité du travail pour - Réduit le *cycle time* (ex : .
minimiser les interruptions : |de I'idée a la prod). - Kanban (jira, Trello).
- Exemples : > L|lm|te le multltasqug - WIP Limits.
Flow (moins de *context switching*).

- *Intégration continue* :
feedback en minutes.

- Livraisons plus prévisibles.

- CI/CD pipelines.

- *Petites user stories* : évite
les blocages longs.

Opportunity

Transformer les problemes
en leviers :

- Innovation technique (ex :
migration vers un nouveau
langage).

- Spikes d’exploration.

- Exemples :

- Amélioration des
compétences (ex : formation
sur un nouveau tool).

- Hackathons internes.

- Un *bug critique* -
opportunité pour améliorer les
tests.

- Renforce la cohésion
d’équipe (résolution
collaborative).

- Blameless
Postmortems.

- Une *dette technique* —»
occasion de refactor.

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/23 12:29

eadl:bloc3:xp:chapl http://slamwiki2.kobject.net/eadl/bloc3/xp/chapl?rev=1763897386

Principe Définition Technique Applications Concretes Outils/Exemples
Duplication utile (vs. - Résilience du systeme (ex: | Backub automatiques
waste) : réplicas de bases de données). P ques.
- Exemples - - Sécurité (ex : double - Linters/Formatters
ples: vérification des PRs). (redondance des checks).
_ X * . i ilité .
Redundancy Tests redonda_nt§ : > Onb,oa,rc,img facilité l(ex : - Documentation as Code
couverture multi-niveaux docs répétées dans plusieurs i
oY s .) (ex : Markdown + ClI).
(unitaires + intégration). formats).
- *Pair programming* : 2
paires d'yeux sur le méme
code.
- Culture de
Apprentissade via I'échec : I’expérimentation (ex : - Feature Toggles
PP 9 " [¥feature flags* pour tester en (LaunchDarkly).
prod).
]] - Solutions plus robustes (ex | .
Failure Exemples : . *chaos engineering*). Chaos Monkey (Netflix).
- Un *déploiement raté* -» - Equipe plus résiliente i
amélioration du pipeline CI/CD.|(moins de peur de I'échec). Postmortem Templates.
- Un *bug en prod* -
renforcement des tests E2E.
Non-négociable : la qualité |- Moins de *technical debt* o
-) e - SonarQube (qualité de
est un multiplicateur de (ex : code propre = moins de code)
productivité. *firefighting*). '
- Exemples : - Mellleur_e velocllte a I_ong _TDD/BDD.
terme (moins de régressions).
ualit - * * . . o
Q y Qlean Code. - noms de. - Fierté du travail (motivation . .
variables explicites, fonctions - Code Reviews strictes.
accrue).
courtes.
- ¥Tests automatisés* : 100%
de couverture pour le code
critique.
Petites itérations pour > Reduit les risques (ex : *big | TDD (petits tests - petit
. N . |bang refactor* - *incremental
eviter les erreurs coliteuses : code).
changes*).
. - L|.vra|sons plus fréquentes | Feature Branches
Baby S - Exemples : (ex : *trunk-based courtes
aby Steps development*). '
- *¥Test-First Programming*: [> Feedback immédiat (ex : - Git hooks (pre-commit
écrire un test avant le code. [*red-green-refactor*). tests).
- *Petites PRs* : max 200
lignes de code.
_— . = Ownership accru (ex : un dev .
Reslpopsa.blllte active (vs. *possede* une feature de bout |, User St'ory Assignment
assignée) : (volontariat).
en bout).
- Qualité accrue (ex : *"Si & | pefinition of Done
Accepted - Exemples : code la feature, je teste aussi ses (DoD) stricte
Responsibility edge cases"*). '

- *TDD* : le dev qui écrit le
code écrit aussi les tests.

- Moins de *handovers*
problématiques.

- Pair Programming
(responsabilité partagée).

- *On-call* : rotation volontaire
pour la prod.

http://slamwiki2.kobject.net/

Printed on 2026/02/12 10:40

2026/02/12 10:40 5/5 Présentation XP

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1?rev=1763897386

Last update: 2025/11/23 12:29

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1?rev=1763897386

	Présentation XP
	Introduction
	Valeurs XP
	Tableau des Valeurs XP

	Principes XP
	Tableau des Principes XP

