2026/01/30 21:52 1/5 Présentation XP

Présentation XP

Introduction

Les piliers de I'eXtreme Programming (XP) reposent sur des mécanismes clés pour :

Optimiser I'efficacité des équipes (pair programming, intégration continue, etc.),

Raccourcir les boucles de feedback (livraisons fréquentes, tests automatisés, rétrospectives),
Fluidifier les releases (déploiement continu, petites itérations incrémentales),

Renforcer la collaboration client (user stories, planification adaptative, démonstrations réguliéres).

La maftrise de XP passe par une compréhension hiérarchisée :

¢ Ses Valeurs (communication, simplicité, feedback, courage, respect) - fondations culturelles.

¢ Ses Principes (ex : “Embrasser le changement”, “Livrer de la valeur rapidement”) - cadrage stratégique
pour choisir/adapter les pratiques.

» Ses Pratiques (TDD, refactoring, CI/CD, velocity tracking, etc.) - outils concrets pour implémenter les
principes.

Adaptation contextuelle :

XP n’est pas un framework rigide. Certaines pratiques (ex : pair programming) peuvent étre ajustées ou
combinées (avec Scrum/Kanban) selon :

e La taille de I'équipe (startup vs. scale-up),
e La criticité du projet (MVP vs. systéme embarqué),
¢ La maturité technique (legacy code vs. greenfield).

XP Agile DevOps TDD Clean code

Valeurs XP

Les valeurs XP (eXtreme Programming) définissent la culture et les comportements clés pour des équipes
agiles et techniques.

Tableau des Valeurs XP

Valeur Définition Technique

Echanges structurés pour :

- *Knowledge sharing* : mob programming, docs collaboratives (ex : Confluence/Notion).
- *Résolution de problemes* : stand-ups techniques, canaux dédiés (Slack/Teams).
- *Coordination* : planning poker, raffinement de backlog.

Approche minimaliste :

- *YAGNI* : “You Aren’t Gonna Need It” - pas de sur-ingénierie.

- *DTSTTCPW* : “Do The Simplest Thing That Could Possibly Work”.

- *Refactoring* : incrémental (ex : *boy scout rule*).

Boucles courtes et automatisées :

- *Tests* : TDD/BDD (feedback en ms).

- *Démos* : Sprint reviews (validation client en jours).

- *Rétros* : Amélioration continue des processus.

Communication

Simplicité

Feedback

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/23 14:41 eadl:bloc3:xp:chapl http://slamwiki2.kobject.net/eadl/bloc3/xp/chapl?rev=1763905293

Valeur Définition Technique
Décisions techniques audacieuses :
- Remettre en question les choix (ex : “Ce framework est-il adapté ?").

Courage . . . \
9 - *Fail fast* : Spikes pour valider des hypotheses avant le dev.
- *Blameless culture* : Postmortems sans jugement.
Collaboration bienveillante :
- *Pair programming* : Montée en compétence (juniors/seniors).
Respect prog 9 [(j)

- *Code reviews* : Focus sur I'amélioration, pas la critique.
- ¥Retros actionables* : Ecoute active des feedbacks.

Principes XP

Les principes XP servent de pont entre les valeurs et les pratiques. lls expliquent pourquoi certaines
pratiques (comme le TDD ou le pair programming) sont efficaces, et comment les adapter a différents contextes
techniques.

1. Humanity

Pourquoi ? Des développeurs épanouis = code de meilleure qualité.

Aspect Définition Impact Concret Outils/Pratiques
Sécurité Environnement OUON 05€ 1, 30% de *knowledge loss* - 1:1s réguliers (template
. poser des questions sans (o .
psychologique ; (turnover réduit). structuré).
jugement.
. Lllberte de choisir s:omment - +25% de productivité (moins |- Objectifs SMART (OKRs
Autonomie résoudre un probleme ; X
) de micro-management). techniques).
technique.
. V'S'b”.'te des co.ntr|but|ons - +40% d'engagement - Kudos Slack / Bonus
Reconnaissance techniques (ex : refactor, N hni
tests). (enquétes internes). techniques.

2. Economics

Pourquoi ? Toute décision technique doit se justifier par sa valeur business.

Critere Exemple Technique Bénéfice Business Outils

Migration vers Kubernetes : 3 sprints |= ROI calculé : économie de |- Business Case

Cout vs. Valeur vs. gain de scalabilité. 20% sur les codts cloud. Template.

Refactor d'un module legacy (5j) vs. - SonarQube (colt de

risque de *firefighting*. > Evite 10j de hotfixes/an. la dette).

Dette Technique

Feature A (valeur client élevée) vs. | Focus sur ce qui génére |- User Story Mapping

Priorisation Feature B (technically cool). du revenue. (Miro).

3. Mutual Benefit

Pourquoi ? Les pratiques XP doivent avantage a la fois les devs et le business.

Pratique |Bénéfice Devs Bénéfice Business Exemple
TDD Code plus simple a maintenir. = -40% de bugs en production. - JUnit / pytest.
Cl/CD Feedback immédiat sur les changements.|= Livraisons 5x plus fréquentes. - GitHub Actions.

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:52

2026/01/30 21:52

3/5

Présentation XP

Pratique

Bénéfice Devs

Bénéfice Business

Exemple

Clean Code

Onboarding des nouveaux plus rapide.

- -30% de temps passé en reviews.

- ESLint / Prettier.

4, Self-Similarity

Pourquoi ? Réutiliser des solutions éprouvées, mais adapter au contexte.

Contexte

Solution Réutilisable

Adaptation Nécessaire

Outil

Microservices

Pattern *Strangler Fig* pour
découper un monolithe.

legacy.

Vérifier la compatibilité avec le

- ADR (Architecture
Decision Records).

Tests

Structure *Given/When/Then* pour
les tests.

Adapter aux spécificités métiers.

- Cucumber / SpecFlow.

Code Reviews

Checklist standardisée.

spécifiques.

Ajouter des criteres projet-

- GitHub PR Templates.

5. Improvement (Kaizen)

Pourquoi ? L'excellence vient de petites améliorations continues.

Niveau Action Impact Metric

Code +1% de couverture de tests par sprint.|> -15% de régressions. - SonarQube.
Processus|Réduire le *lead time* de 10%. = Livraisons plus prévisibles. - DORA Metrics.
Equipe Rétrospective hebdomadaire. - +20% de satisfaction d'équipe.|- Officevibe.

6. Diversity

Pourquoi ? Des équipes diversifiées = meilleures solutions techniques.

Type de Diversité Exemple Bénéfice Technique |Pratique

Compétences

Backend + DevOps dans la
méme équipe.

- Solutions full-stack
optimisées.

- Pair Programming rotatif.

Expérience

Juniors + Seniors sur un spike

- Innovation + rigueur.

- Mentorat inverse.

technique.
Perspectives Bramsﬁormmg avec des non- > UX/UI plus réalistes. |- Wor_kshops Cross-
techniques. fonctionnels.

7. Reflection

Pourquoi ? Apprendre de chaque action pour s'améliorer.

Type Format Exemple Outil
Rétrospective Mad/Sad/Glad. “Pourquoi ce bug a passé les tests ?”|- Retrium.
Postmortem |Blameless (sans culpabilité).[Analyse d'un incident de prod. - Google Docs Template.

Code Review

Feedback structuré.

“Pourquoi ce PR a pris 3 jours ?”

- GitHub PR Comments.

8. Flow

Pourquoi ? Un flux de travail fluide = livraisons plus rapides.

Obstacle

Solution

Impact

Outil

Blocages

WIP Limits (max 2 taches en
cours).

- -50% de *context switching*.

- Kanban Board.

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/11/23 14:41 eadl:bloc3:xp:chapl http://slamwiki2.kobject.net/eadl/bloc3/xp/chapl?rev=1763905293

Obstacle Solution Impact Outil

Dépendances |User stories plus petites. - Livraisons incrémentales. - Story Splitting
Techniques.

Feedback Lent|CI/CD avec tests automatisés. |> Feedback en <10 min. - GitHub Actions.

9. Opportunity

Pourquoi ? Transformer les problemes en opportunités d'apprentissage.

Probléme Opportunité Action Exemple

Bug Critique Améliorer la suite de tests.|Ajouter des tests E2E. - Cypress.

Dette Technique|Moderniser le code. Spike pour évaluer les options. - Tech Radar.
Conflit d'équipe Renforcer la collaboration. |Atelier de team building technique.|- Mob Programming.

10. Redundancy

Pourquoi ? Certaines redondances sont utiles, pas du *waste*.

Type Exemple Bénéfice Outil

Tests unitaires + intégration pour
un module critique.

README + docs dans le code + = Onboardingen 1jvs 1

Tests - Couverture a 95%. - Jest / Pytest.

Documentation - Markdown / Confluence.

wiki. semaine.
. . . |- GitHub Protected
Reviews 2 approvers pour les PRs critiques. = 0 bug en prod sur 6 mois. Branches.
11. Failure
Pourquoi ? L'échec est une source d'apprentissage, pas une honte.
Type d'Echec Lecon Apprise Action Corrective Outil
Déploiement Raté |Pipeline CI/CD trop lent. |Optimiser les étapes de build. - GitHub Actions Cache.
Bug en Prod Tests E2E manquants. |Ajouter des tests de non-régression.|- Selenium.
Estimation Fausse|User story mal découpée.|Utiliser le *Story Splitting*. - Planning Poker.
12. Quality
Pourquoi ? La qualité n'est pas négociable - c'est un multiplicateur.
Pratique Critere Impact Outil
Clean Code Fonc.:tpns <20 lignes, noms = -40% de temps en reviews. |- ESLint / SonarQube.
explicites.
o y .
TDD 10_0_A> de couverture pour le code |- 0 régression sur les - JUnit / pytest.
critique. features core.
Definition of Done rCehveizg\lless)t stricte (tests, docs, - Livraisons prévisibles. - Jira DoD.

13. Baby Steps

Pourquoi ? Des petites étapes = moins de risques, plus de succes.

http://slamwiki2.kobject.net/ Printed on 2026/01/30 21:52

2026/01/30 21:52 5/5 Présentation XP
Contexte Action Bénéfice Exemple
Legacy Code Ajouter des tests sur 1 module a la - Refactor sécurisé. - Approach: Strangler Fig.

fois.

Nouvelle Feature

Découper en sous-taches <1j.

= Livraison en 3 sprints
vs 1.

- User Story Splitting.

Apprentissage

techno.

Spike de 2h pour évaluer une

- Décision éclairée.

- Timeboxed Research.

14. Accepted Responsibility

Pourquoi ? La responsabilité se prend, ne s'assigne pas.

Pratique Responsabilité Impact Outil
TDD Le dev écrit aussi les tests. - Code testé a 100%. - JUnit / pytest.
Oon-Call Rotation volontaire. > Resolution plus rapide des - PagerDuty.

incidents.

Code Ownership

Un dev “posséde” une feature de

bout en bout.

- Moins de *handovers*
problématiques.

- Feature Flags.

From:

http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:

http://slamwiki2.kobject.net/eadl/bloc3/xp/chapl?rev=1763905293

Last update: 2025/11/23 14:41

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap1?rev=1763905293

	Présentation XP
	Introduction
	Valeurs XP
	Tableau des Valeurs XP

	Principes XP
	1. Humanity
	2. Economics
	3. Mutual Benefit
	4. Self-Similarity
	5. Improvement (Kaizen)
	6. Diversity
	7. Reflection
	8. Flow
	9. Opportunity
	10. Redundancy
	11. Failure
	12. Quality
	13. Baby Steps
	14. Accepted Responsibility

