2026/01/28 22:03 1/4 Les 12 pratiques de I'Extreme Programming

Les 12 pratiques de I'Extreme Programming

Pratiques de feedback fin

Ces pratiques visent & obtenir un retour d'information trés rapidement (de quelques secondes a quelques
jours) plutét que d'attendre des semaines ou des mois.

1. Programmation en binome (Pair Programming)

Deux développeurs travaillent ensemble sur le méme ordinateur. L'un écrit le code (le “driver”), I'autre observe
et réfléchit a la stratégie (le “navigator”). Les roles s'échangent réguliérement.

Bénéfices :

e Meilleure qualité du code
¢ Partage des connaissances
¢ Réduction des erreurs

Le Pair Programming contribue aussi fortement a la compréhension partagée du systéme.
2. Jeu de planification (Planning Game)

Processus de planification collaboratif entre I'équipe technique et le client. Se divise en deux parties :

* Release Planning : planification a long terme
e Iteration Planning : planification détaillée pour I'itération en cours

Principes :
e Le client définit les priorités

o Les développeurs estiment la complexité
o Décisions basées sur la valeur métier

3. Développement piloté par les tests (Test-Driven Development - TDD)

Les tests unitaires sont écrits avant le code de production.
Cycle TDD :

1. Ecrire un test qui échoue (Red)
2. Ecrire le code minimal pour passer le test (Green)
3. Améliorer le code (Refactor)

4. Client sur site (On-Site Customer)

Un représentant du client est présent a temps plein avec I'équipe de développement.
Role du client :

e Répondre aux questions immédiatement

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2025/11/25 08:34 eadl:bloc3:xp:chap2 http://slamwiki2.kobject.net/eadl/bloc3/xp/chap?2

e Ecrire les user stories
o Définir les tests d'acceptation
¢ Prioriser les fonctionnalités

Pratiques de processus continu

5. Intégration continue (Continuous Integration)

Le code est intégré et testé plusieurs fois par jour dans le dépét principal.
Régles :

e Intégrer au minimum une fois par jour
e Tous les tests doivent passer a 100%
e Si les tests échouent, corriger immédiatement

6. Refactoring

Amélioration continue de la structure du code sans modifier son comportement.

Objectifs :

Eliminer la duplication
Améliorer la lisibilité
Simplifier la conception
Faciliter les évolutions futures

Principe : Le refactoring est une activité continue, pas une phase distincte.

7. Petites releases (Small Releases)

Livrer fréquemment des versions fonctionnelles du logiciel en production.

Avantages :

Feedback rapide du client
Réduction des risques
Valeur délivrée rapidement
Apprentissage continu

Fréquence typique : De quelques semaines a quelques mois maximum

Pratiques de compréhension partagée

8. Conception simple (Simple Design)

Le code doit &tre aussi simple que possible, tout en remplissant les besoins actuels.

Critéres d'une conception simple (par ordre de priorité) :

http://slamwiki2.kobject.net/

Printed on 2026/01/28 22:03



2026/01/28 22:03 3/4 Les 12 pratiques de I'Extreme Programming

1. Passe tous les tests

2. Révele l'intention

3. Pas de duplication

4. Minimum d'éléments (classes, méthodes, etc.)

Ne pas anticiper les besoins futurs (YAGNI - You Aren't Gonna Need It)
9. Métaphore systeme (System Metaphor)

Une histoire simple et partagée qui décrit comment fonctionne le systeme.
Objectif :

e Vocabulaire commun entre tous les acteurs
¢ Guide pour l'architecture
¢ Facilite la communication

Exemple : “Le systeme fonctionne comme une chaine de montage” ou “C'est comme un bureau de poste”
10. Propriété collective du code (Collective Code Ownership)

Tout le monde est responsable de tout le code. N'importe quel développeur peut modifier n'importe quelle
partie du systeme.

Conditions nécessaires :

e Standards de codage respectés
e Tests unitaires exhaustifs
¢ Intégration continue

Bénéfices :

¢ Pas de goulot d'étranglement
¢ Meilleure connaissance du systeme
¢ Flexibilité des affectations

11. Standards de codage (Coding Standards)

L'équipe suit des conventions de codage communes et cohérentes.

Eléments couverts :

Formatage du code
Conventions de nommage
Structures de fichiers
Commentaires

Objectif : Le code doit sembler écrit par une seule personne.

Pratiques de bien-étre du programmeur

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2025/11/25 08:34 eadl:bloc3:xp:chap2 http://slamwiki2.kobject.net/eadl/bloc3/xp/chap?2

12. Rythme soutenable (Sustainable Pace)

L'équipe travaille a un rythme qui peut étre maintenu indéfiniment, typiquement 40 heures par semaine.
Reégle : Pas plus d'une semaine d'heures supplémentaires consécutive.
Raisons :

o La fatigue génere des erreurs

¢ La créativité diminue

e |Le turnover augmente

e La productivité a long terme baisse

Cette pratique était initialement appelée “40-hour week” mais a été renommée pour étre plus universelle.
Relations entre les pratiques

Les pratiques XP se soutiennent mutuellement :

e TDD rend possible la propriété collective (confiance dans le code)

* Programmation en binome facilite le refactoring (deux cerveaux pour améliorer)
Intégration continue s'appuie sur les tests (validation automatique)

Client sur site nourrit le jeu de planification (feedback immédiat)

¢ Rythme soutenable améliore la conception simple (esprit clair)

Sources

e Kent Beck - "Extreme Programming Explained: Embrace Change" (1999, 2nd edition 2004)
e extremeprogramming.org - Site de référence un peu pourri

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap2

Last update: 2025/11/25 08:34

http://slamwiki2.kobject.net/ Printed on 2026/01/28 22:03


https://www.oreilly.com/library/view/extreme-programming-explained/0201616416/
http://www.extremeprogramming.org/
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap2

	Les 12 pratiques de l'Extreme Programming
	Pratiques de feedback fin
	1. Programmation en binôme (Pair Programming)
	2. Jeu de planification (Planning Game)
	3. Développement piloté par les tests (Test-Driven Development - TDD)
	4. Client sur site (On-Site Customer)

	Pratiques de processus continu
	5. Intégration continue (Continuous Integration)
	6. Refactoring
	7. Petites releases (Small Releases)

	Pratiques de compréhension partagée
	8. Conception simple (Simple Design)
	9. Métaphore système (System Metaphor)
	10. Propriété collective du code (Collective Code Ownership)
	11. Standards de codage (Coding Standards)

	Pratiques de bien-être du programmeur
	12. Rythme soutenable (Sustainable Pace)

	Relations entre les pratiques
	Sources


