
2026/01/31 12:45 1/4 Les 12 pratiques de l'Extreme Programming

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Les 12 pratiques de l'Extreme Programming

Pratiques de feedback fin

1. Programmation en binôme (Pair Programming)

Deux développeurs travaillent ensemble sur le même ordinateur. L'un écrit le code (le “driver”), l'autre observe
et réfléchit à la stratégie (le “navigator”). Les rôles s'échangent régulièrement.

Bénéfices :

Meilleure qualité du code
Partage des connaissances
Réduction des erreurs

2. Jeu de planification (Planning Game)

Processus de planification collaboratif entre l'équipe technique et le client. Se divise en deux parties :

Release Planning : planification à long terme
Iteration Planning : planification détaillée pour l'itération en cours

Principes :

Le client définit les priorités
Les développeurs estiment la complexité
Décisions basées sur la valeur métier

3. Développement piloté par les tests (Test-Driven Development - TDD)

Les tests unitaires sont écrits avant le code de production.

Cycle TDD :

Écrire un test qui échoue (Red)1.
Écrire le code minimal pour passer le test (Green)2.
Améliorer le code (Refactor)3.

4. Client sur site (On-Site Customer)

Un représentant du client est présent à temps plein avec l'équipe de développement.

Rôle du client :

Répondre aux questions immédiatement
Écrire les user stories
Définir les tests d'acceptation
Prioriser les fonctionnalités



Last update: 2025/11/25 03:36 eadl:bloc3:xp:chap2 http://slamwiki2.kobject.net/eadl/bloc3/xp/chap2?rev=1764038193

http://slamwiki2.kobject.net/ Printed on 2026/01/31 12:45

Pratiques de processus continu

5. Intégration continue (Continuous Integration)

Le code est intégré et testé plusieurs fois par jour dans le dépôt principal.

Règles :

Intégrer au minimum une fois par jour
Tous les tests doivent passer à 100%
Si les tests échouent, corriger immédiatement

6. Refactoring

Amélioration continue de la structure du code sans modifier son comportement.

Objectifs :

Éliminer la duplication
Améliorer la lisibilité
Simplifier la conception
Faciliter les évolutions futures

Principe : Le refactoring est une activité continue, pas une phase distincte.

7. Petites releases (Small Releases)

Livrer fréquemment des versions fonctionnelles du logiciel en production.

Avantages :

Feedback rapide du client
Réduction des risques
Valeur délivrée rapidement
Apprentissage continu

Fréquence typique : De quelques semaines à quelques mois maximum

Pratiques de compréhension partagée

8. Conception simple (Simple Design)

Le code doit être aussi simple que possible, tout en remplissant les besoins actuels.

Critères d'une conception simple (par ordre de priorité) :

Passe tous les tests1.
Révèle l'intention2.
Pas de duplication3.
Minimum d'éléments (classes, méthodes, etc.)4.



2026/01/31 12:45 3/4 Les 12 pratiques de l'Extreme Programming

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Ne pas anticiper les besoins futurs (YAGNI - You Aren't Gonna Need It)

9. Métaphore système (System Metaphor)

Une histoire simple et partagée qui décrit comment fonctionne le système.

Objectif :

Vocabulaire commun entre tous les acteurs
Guide pour l'architecture
Facilite la communication

Exemple : “Le système fonctionne comme une chaîne de montage” ou “C'est comme un bureau de poste”

10. Propriété collective du code (Collective Code Ownership)

Tout le monde est responsable de tout le code. N'importe quel développeur peut modifier n'importe quelle
partie du système.

Conditions nécessaires :

Standards de codage respectés
Tests unitaires exhaustifs
Intégration continue

Bénéfices :

Pas de goulot d'étranglement
Meilleure connaissance du système
Flexibilité des affectations

11. Standards de codage (Coding Standards)

L'équipe suit des conventions de codage communes et cohérentes.

Éléments couverts :

Formatage du code
Conventions de nommage
Structures de fichiers
Commentaires

Objectif : Le code doit sembler écrit par une seule personne.

Pratiques de bien-être du programmeur

12. Rythme soutenable (Sustainable Pace)

L'équipe travaille à un rythme qui peut être maintenu indéfiniment, typiquement 40 heures par semaine.

Règle : Pas plus d'une semaine d'heures supplémentaires consécutive.



Last update: 2025/11/25 03:36 eadl:bloc3:xp:chap2 http://slamwiki2.kobject.net/eadl/bloc3/xp/chap2?rev=1764038193

http://slamwiki2.kobject.net/ Printed on 2026/01/31 12:45

Raisons :

La fatigue génère des erreurs
La créativité diminue
Le turnover augmente
La productivité à long terme baisse

<note tip>Cette pratique était initialement appelée “40-hour week” mais a été renommée pour être plus
universelle.</note>

Relations entre les pratiques

Les pratiques XP se soutiennent mutuellement :

TDD rend possible la propriété collective (confiance dans le code)
Programmation en binôme facilite le refactoring (deux cerveaux pour améliorer)
Intégration continue s'appuie sur les tests (validation automatique)
Client sur site nourrit le jeu de planification (feedback immédiat)
Rythme soutenable améliore la conception simple (esprit clair)

XP recommande d'adopter toutes les pratiques ensemble. En retirer une affaiblit l'ensemble du système.

Sources

Kent Beck - “Extreme Programming Explained: Embrace Change” (1999, 2nd edition 2004)
extremeprogramming.org - Site de référence un peu pourri

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap2?rev=1764038193

Last update: 2025/11/25 03:36

http://www.extremeprogramming.org/
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap2?rev=1764038193

	Les 12 pratiques de l'Extreme Programming
	Pratiques de feedback fin
	1. Programmation en binôme (Pair Programming)
	2. Jeu de planification (Planning Game)
	3. Développement piloté par les tests (Test-Driven Development - TDD)
	4. Client sur site (On-Site Customer)

	Pratiques de processus continu
	5. Intégration continue (Continuous Integration)
	6. Refactoring
	7. Petites releases (Small Releases)

	Pratiques de compréhension partagée
	8. Conception simple (Simple Design)
	9. Métaphore système (System Metaphor)
	10. Propriété collective du code (Collective Code Ownership)
	11. Standards de codage (Coding Standards)

	Pratiques de bien-être du programmeur
	12. Rythme soutenable (Sustainable Pace)

	Relations entre les pratiques
	Sources


