
2026/02/11 06:51 1/2 Les 12 pratiques de l'Extreme Programming

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Les 12 pratiques de l'Extreme Programming

Pratiques de feedback fin

Ces pratiques visent à obtenir un retour d'information très rapidement (de quelques secondes à quelques
jours) plutôt que d'attendre des semaines ou des mois.

1. Programmation en binôme (Pair Programming)

Deux développeurs travaillent ensemble sur le même ordinateur. L'un écrit le code (le “driver”), l'autre observe
et réfléchit à la stratégie (le “navigator”). Les rôles s'échangent régulièrement.

Bénéfices :

Meilleure qualité du code
Partage des connaissances
Réduction des erreurs

Le Pair Programming contribue aussi fortement à la compréhension partagée du système.</ ==== 2. Jeu de
planification (Planning Game) ==== Processus de planification collaboratif entre l'équipe technique et le client.
Se divise en deux parties : * Release Planning : planification à long terme * Iteration Planning : planification
détaillée pour l'itération en cours Principes : * Le client définit les priorités * Les développeurs estiment la
complexité * Décisions basées sur la valeur métier ==== 3. Développement piloté par les tests (Test-Driven
Development - TDD) ==== Les tests unitaires sont écrits avant le code de production. Cycle TDD : - Écrire un
test qui échoue (Red) - Écrire le code minimal pour passer le test (Green) - Améliorer le code (Refactor) ====
4. Client sur site (On-Site Customer) ==== Un représentant du client est présent à temps plein avec l'équipe de
développement. Rôle du client : * Répondre aux questions immédiatement * Écrire les user stories * Définir
les tests d'acceptation * Prioriser les fonctionnalités ===== Pratiques de processus continu ===== ==== 5.
Intégration continue (Continuous Integration) ==== Le code est intégré et testé plusieurs fois par jour dans le
dépôt principal. Règles : * Intégrer au minimum une fois par jour * Tous les tests doivent passer à 100% * Si les
tests échouent, corriger immédiatement ==== 6. Refactoring ==== Amélioration continue de la structure du
code sans modifier son comportement. Objectifs : * Éliminer la duplication * Améliorer la lisibilité * Simplifier la
conception * Faciliter les évolutions futures Principe : Le refactoring est une activité continue, pas une phase
distincte. ==== 7. Petites releases (Small Releases) ==== Livrer fréquemment des versions fonctionnelles du
logiciel en production. Avantages : * Feedback rapide du client * Réduction des risques * Valeur délivrée
rapidement * Apprentissage continu Fréquence typique : De quelques semaines à quelques mois maximum
===== Pratiques de compréhension partagée ===== ==== 8. Conception simple (Simple Design) ==== Le
code doit être aussi simple que possible, tout en remplissant les besoins actuels. Critères d'une conception
simple (par ordre de priorité) : - Passe tous les tests - Révèle l'intention - Pas de duplication - Minimum
d'éléments (classes, méthodes, etc.) Ne pas anticiper les besoins futurs (YAGNI - You Aren't Gonna Need It)
==== 9. Métaphore système (System Metaphor) ==== Une histoire simple et partagée qui décrit comment
fonctionne le système. Objectif : * Vocabulaire commun entre tous les acteurs * Guide pour l'architecture *
Facilite la communication Exemple : “Le système fonctionne comme une chaîne de montage” ou “C'est comme
un bureau de poste” ==== 10. Propriété collective du code (Collective Code Ownership) ==== Tout le monde
est responsable de tout le code. N'importe quel développeur peut modifier n'importe quelle partie du système.
Conditions nécessaires : * Standards de codage respectés * Tests unitaires exhaustifs * Intégration continue
Bénéfices : * Pas de goulot d'étranglement * Meilleure connaissance du système * Flexibilité des affectations
==== 11. Standards de codage (Coding Standards) ==== L'équipe suit des conventions de codage communes
et cohérentes. Éléments couverts : * Formatage du code * Conventions de nommage * Structures de fichiers *
Commentaires Objectif : Le code doit sembler écrit par une seule personne. ===== Pratiques de bien-être du
programmeur ===== ==== 12. Rythme soutenable (Sustainable Pace) ==== L'équipe travaille à un rythme
qui peut être maintenu indéfiniment, typiquement 40 heures par semaine. Règle : Pas plus d'une semaine



Last update: 2025/11/25 08:34 eadl:bloc3:xp:chap2 http://slamwiki2.kobject.net/eadl/bloc3/xp/chap2?rev=1764056064

http://slamwiki2.kobject.net/ Printed on 2026/02/11 06:51

d'heures supplémentaires consécutive. Raisons : * La fatigue génère des erreurs * La créativité diminue * Le
turnover augmente * La productivité à long terme baisse Cette pratique était initialement appelée “40-hour
week” mais a été renommée pour être plus universelle. ===== Relations entre les pratiques ===== Les
pratiques XP se soutiennent mutuellement : * TDD rend possible la propriété collective (confiance dans le
code) * Programmation en binôme facilite le refactoring (deux cerveaux pour améliorer) * Intégration
continue s'appuie sur les tests (validation automatique) * Client sur site nourrit le jeu de planification
(feedback immédiat) * Rythme soutenable améliore la conception simple (esprit clair) XP recommande
d'adopter toutes les pratiques ensemble. En retirer une affaiblit l'ensemble du système. ===== Sources
===== * Kent Beck - "Extreme Programming Explained: Embrace Change" (1999, 2nd edition 2004) *
extremeprogramming.org - Site de référence un peu pourri

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap2?rev=1764056064

Last update: 2025/11/25 08:34

https://www.oreilly.com/library/view/extreme-programming-explained/0201616416/
http://www.extremeprogramming.org/
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/eadl/bloc3/xp/chap2?rev=1764056064

	Les 12 pratiques de l'Extreme Programming
	Pratiques de feedback fin
	1. Programmation en binôme (Pair Programming)



