2026/01/30 04:48 1/25 Héritage avec Spring Data JPA

Héritage avec Spring Data JPA

Introduction

L'héritage est un concept fondamental de la POO qui peut étre mappé en base de données de différentes
manieres avec JPA. JPA propose 3 stratégies principales définies par I'annotation @Inheritance.

Les Stratégies d'Héritage JPA
1. SINGLE_TABLE (Table unique)
Principe

Toutes les classes de la hiérarchie sont stockées dans une seule table avec une colonne discriminante.

Code

@Entity

@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@iscriminatorColumn(name = "type personne", discriminatorType =

DiscriminatorType.STRING)
public abstract class Personne {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String nom;
private String prenom;
// getters/setters
}

@Entity

@iscriminatorValue("ETUDIANT")

public class Etudiant extends Personne {
private String numeroEtudiant;
private Integer promotion;
// getters/setters

}

@Entity

@DiscriminatorValue("PROFESSEUR")

public class Professeur extends Personne {
private String specialite;
private Double salaire;
// getters/setters

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

Table résultante

CREATE TABLE personne (
id BIGINT PRIMARY KEY,
type personne VARCHAR(31), -- Colonne discriminante
nom VARCHAR(255),
prenom VARCHAR(255),

numero etudiant VARCHAR(255), -- NULL pour professeurs
promotion INT, -- NULL pour professeurs
specialite VARCHAR(255), -- NULL pour étudiants
salaire DOUBLE -- NULL pour étudiants

2. JOINED (Table par classe)

Principe

Une table pour chaque classe de la hiérarchie, liées par clé étrangeére vers la table parent.

Code

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Personne {
©@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 3/25

Héritage avec Spring Data JPA

private Long id;
private String nom;
private String prenom;
// getters/setters

}

@Entity

public class Etudiant extends Personne {
private String numeroEtudiant;
private Integer promotion;
// getters/setters

}

@Entity

public class Professeur extends Personne {
private String specialite;
private Double salaire;
// getters/setters

Tables résultantes

CREATE TABLE personne (
id BIGINT PRIMARY KEY,
nom VARCHAR(255),
prenom VARCHAR(255)

);

CREATE TABLE etudiant (

id BIGINT PRIMARY KEY,

numero etudiant VARCHAR(255),

promotion INT,

FOREIGN KEY (id) REFERENCES personne(id)
)i

CREATE TABLE professeur (
id BIGINT PRIMARY KEY,
specialite VARCHAR(255),
salaire DOUBLE,
FOREIGN KEY (id) REFERENCES personne(id)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

3. TABLE_PER_CLASS (Table par classe concrete)

Principe

Une table compléte pour chaque classe concréte (pas de table pour la classe abstraite). Les champs du
parent sont dupliqués dans chaque table enfant.

Code

@Entity
@Inheritance(strategy = InheritanceType.TABLE PER CLASS)
public abstract class Personne {

@Id

@GeneratedValue(strategy = GenerationType.AUTO) // Attention au type de
génération

private Long id;

private String nom;

private String prenom;

// getters/setters
}

@Entity

public class Etudiant extends Personne {
private String numeroEtudiant;
private Integer promotion;
// getters/setters

}

@Entity

public class Professeur extends Personne {
private String specialite;
private Double salaire;
// getters/setters

Tables résultantes

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 5/25 Héritage avec Spring Data JPA

-- Pas de table personne !

CREATE TABLE etudiant (
id BIGINT PRIMARY KEY,
nom VARCHAR(255), -- Dupliqué
prenom VARCHAR(255), -- Dupliqué
numero etudiant VARCHAR(255),
promotion INT

)i

CREATE TABLE professeur (
id BIGINT PRIMARY KEY,
nom VARCHAR(255), -- Dupliqué
prenom VARCHAR(255), -- Dupliqué
specialite VARCHAR(255),
salaire DOUBLE

@MappedSuperclass (Alternative a I'héritage)
Principe

La classe parente n'est PAS une entité, elle sert uniquement de modele pour partager des champs communs.
Aucune table n'est créée pour elle, et aucune requéte polymorphique n'est possible.

Code

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

@MappedSuperclass

public abstract class EntiteAuditee {
@CreatedDate
private LocalDateTime dateCreation;
@LastModifiedDate
private LocalDateTime dateModification;
@CreatedBy
private String creerPar;
@LastModifiedBy
private String modifierPar;
// getters/setters

}

@Entity
public class Produit extends EntiteAuditee {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String nom;
private Double prix;
// getters/setters
}

@Entity
public class Commande extends EntiteAuditee {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String numero;
private Double total;
// getters/setters

Tables résultantes

-- Pas de table entite auditee !

CREATE TABLE produit (
id BIGINT PRIMARY KEY,
nom VARCHAR(255),
prix DOUBLE,
date creation TIMESTAMP,
date modification TIMESTAMP,
creer par VARCHAR(255),
modifier par VARCHAR(255)

i

CREATE TABLE commande (
id BIGINT PRIMARY KEY,
numero VARCHAR(255),
total DOUBLE,
date creation TIMESTAMP,
date modification TIMESTAMP,

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 7/25 Héritage avec Spring Data JPA

creer _par VARCHAR(255),
modifier par VARCHAR(255)

);

Repositories Spring Data JPA

Repositories de base

// Repository pour le parent (requétes polymorphiques)

public interface PersonneRepository extends JpaRepository<Personne, Long> {
List<Personne> findByNom(String nom);
// Retourne TOUS les types (Etudiant + Professeur)
List<Personne> findByPrenomContaining(String prenom) ;

}

// Repository spécifique pour Etudiant

public interface EtudiantRepository extends JpaRepository<Etudiant, Long> {
List<Etudiant> findByPromotion(Integer promotion);
@Query ("SELECT e FROM Etudiant e WHERE e.numeroEtudiant = :numero")
Optional<Etudiant> findByNumero(@Param("numero") String numero);
// Requéte spécifique aux étudiants
List<Etudiant> findByPromotionGreaterThan(Integer promotion);

}

// Repository spécifique pour Professeur

public interface ProfesseurRepository extends JpaRepository<Professeur, Long> {
List<Professeur> findBySpecialite(String specialite);
List<Professeur> findBySalaireGreaterThan(Double salaire);

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

@Query ("SELECT p FROM Professeur p WHERE p.specialite LIKE %:mot%")
List<Professeur> rechercherParSpecialite(@Param("mot") String mot);

Requétes polymorphiques

@Service
public class PersonneService {
@Autowired
private PersonneRepository personneRepository;
@Autowired
private EtudiantRepository etudiantRepository;
@Autowired
private ProfesseurRepository professeurRepository;
// Récupere TOUS les types (Etudiant + Professeur)
public List<Personne> touteslLesPersonnes() {
return personneRepository.findAll();
}
// Filtrage par type avec instanceOf
public List<Etudiant> seulementlLesEtudiants() {
return personneRepository.findAll().stream()
.filter(p -> p instanceof Etudiant)
.map(p -> (Etudiant) p)
.collect(Collectors.toList());
}
// Meilleure approche : utiliser le repository spécifique
public List<Etudiant> tousLesEtudiants() {
return etudiantRepository.findAll();
}
// Utilisation de TYPE() dans JPQL
@Query ("SELECT p FROM Personne p WHERE TYPE(p)
List<Etudiant> findAllEtudiants();
@Query("SELECT p FROM Personne p WHERE TYPE(p)
List<Professeur> findAllProfesseurs();
// Filtrage multiple
@Query("SELECT p FROM Personne p WHERE TYPE(p) IN (Etudiant, Professeur)")
List<Personne> findAllPersonnesSpecifiques();
// Requéte polymorphique avec condition
@Query ("SELECT p FROM Personne p WHERE p.nom = :nom AND TYPE(p) = Etudiant")
List<Etudiant> findEtudiantsByNom(@Param("nom") String nom);

Etudiant")

Professeur")

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 9/25 Héritage avec Spring Data JPA

Annotations importantes

@Inheritance

@Inheritance(strategy = InheritanceType.SINGLE TABLE) // ou JOINED,
TABLE PER_CLASS

// Parametres possibles :
// - InheritanceType.SINGLE TABLE : table unique (défaut)

// - InheritanceType.JOINED : table par classe
// - InheritanceType.TABLE PER CLASS : table par classe concrete

@DiscriminatorColumn (pour SINGLE_TABLE)

@iscriminatorColumn(

name = "type entite", // Nom de la colonne (défaut :
DTYPE)

discriminatorType = DiscriminatorType.STRING, // STRING, INTEGER, CHAR

length = 50 // Taille (pour STRING)

)

// Exemples :

@DiscriminatorColumn (name
@DiscriminatorColumn(name
@DiscriminatorColumn (name
DiscriminatorType.INTEGER)

"type") // VARCHAR(31) par défaut
"categorie", length = 100)
"type id", discriminatorType =

@DiscriminatorValue

@DiscriminatorValue("ETUDIANT") // Valeur dans la colonne discriminante

// Si non spécifié, utilise le nom de la classe par défaut
@Entity

@DiscriminatorValue("PROF") // Personnalisé

public class Professeur extends Personne { }

@Entity // Utilisera "Etudiant" par défaut
public class Etudiant extends Personne { }

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

@PrimaryKeyjoinColumn (pour JOINED)

@Entity
@PrimaryKeyJoinColumn(name = "etudiant id") // Personnalise le nom de la FK
public class Etudiant extends Personne {

// Par défaut, la FK aurait été nommée "id"

}

// Avec plusieurs colonnes (cas rare)

@Entity

@PrimaryKeyJoinColumn(name = "id etudiant", referencedColumnName = "id")

public class Etudiant extends Personne { }

Exemples Pratiques Complets

Exemple 1 : Systeme de paiement (SINGLE_TABLE)

@Entity
@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@iscriminatorColumn(name = "payment type")
public abstract class Paiement {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private Double montant;
private LocalDateTime date;
@ManyToOne
@JoinColumn(name = "commande id")
private Commande commande;
// Méthode abstraite pour le polymorphisme
public abstract String getMethodeDescription();
}

@Entity
@DiscriminatorValue("CARTE")
public class PaiementCarte extends Paiement {
private String numeroCarte;
private String cvv;
private String nomTitulaire;
@Override
public String getMethodeDescription() {
return "Carte bancaire";
}
}

@Entity

@DiscriminatorValue("PAYPAL")

public class PaiementPaypal extends Paiement {
private String email;

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 11/25 Héritage avec Spring Data JPA

private String transactionId;
@Override
public String getMethodeDescription() {
return "PayPal";
}
}

@Entity
@DiscriminatorValue("VIREMENT")
public class PaiementVirement extends Paiement {
private String iban;
private String bic;
private String reference;
@Override
public String getMethodeDescription() {
return "Virement bancaire";
}
}

// Repositories

public interface PaiementRepository extends JpaRepository<Paiement, Long> {
List<Paiement> findByMontantGreaterThan(Double montant);
@Query("SELECT p FROM Paiement p WHERE TYPE(p) = PaiementCarte")
List<PaiementCarte> findAllPaiementsCarte();
@Query("SELECT p FROM Paiement p WHERE p.date BETWEEN :debut AND :fin")
List<Paiement> findByDateBetween(@Param("debut") LocalDateTime debut,

@Param("fin") LocalDateTime fin);

}

public interface PaiementCarteRepository extends JpaRepository<PaiementCarte, Long>
{
Optional<PaiementCarte> findByNumeroCarte(String numeroCarte);

}

// Service
@Service
public class PaiementService {
@Autowired
private PaiementRepository paiementRepository;
public void traiterPaiement(Paiement paiement) {
paiementRepository.save(paiement);
// Traitement spécifique selon le type
if (paiement instanceof PaiementCarte carte) {
// Logique spécifique carte
validerCarte(carte);
} else if (paiement instanceof PaiementPaypal paypal) {
// Logique spécifique PayPal
verifierTransactionPaypal(paypal);
} else if (paiement instanceof PaiementVirement virement) {
// Logique spécifique virement
validerIban(virement);
}

}
public Map<String, Long> statistiquesParType() {

return paiementRepository.findAll().stream()
.collect(Collectors.groupingBy (

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

p -> p.getClass().getSimpleName(),
Collectors.counting()
)):
}
public Double montantTotalParType(String type) {
return paiementRepository.findAll().stream()
.filter(p -> p.getClass().getSimpleName().equals(type))
.mapToDouble(Paiement: :getMontant)
.sum();
}
private void validerCarte(PaiementCarte carte) {
// Logique de validation
}
private void verifierTransactionPaypal (PaiementPaypal paypal) {
// Logique de vérification
}
private void validerIban(PaiementVirement virement) {
// Logique de validation

}

Exemple 2 : Systeme de documents (JOINED)

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Document {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String titre;
private LocalDateTime dateCreation;
private String description;
@anyToOne(fetch = FetchType.LAZY)
@JoinColumn(name = "utilisateur id")
private Utilisateur auteur;
@Enumerated (EnumType.STRING)
private StatutDocument statut;
// getters/setters
}

@Entity

public class DocumentTexte extends Document {
@Lob
@Column(columnDefinition = "TEXT")

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 13/25 Héritage avec Spring Data JPA

private String contenu;

private Integer nombreMots;

private Integer nombreParagraphes;

@Enumerated (EnumType.STRING)

private FormatTexte format; // MARKDOWN, HTML, PLAIN
// getters/setters

}

@Entity

public class DocumentImage extends Document {
private String url;
private Integer largeur;
private Integer hauteur;
private String format; // PNG, JPG, GIF, etc.
private Long tailleFichier;
@Column(columnDefinition = "TEXT")
private String altText;
// getters/setters

}

@Entity

public class DocumentPdf extends Document {
private String cheminFichier;
private Integer nombrePages;
private Long tailleFichier;
private Boolean estProtege;
@Column(columnDefinition = "TEXT")
private String metadonnees;
// getters/setters

}

@Entity
public class DocumentVideo extends Document {
private String url;
private Integer dureeSecondes;
private String codec;
private String resolution;
private Long tailleFichier;
// getters/setters

}

// Repositories

public interface DocumentRepository extends JpaRepository<Document, Long> {
List<Document> findByAuteur(Utilisateur auteur);
@Query("SELECT d FROM Document d WHERE d.dateCreation BETWEEN :debut AND :fin")
List<Document> findByPeriode(@Param("debut") LocalDateTime debut,

@Param("fin") LocalDateTime fin);

@Query ("SELECT TYPE(d), COUNT(d) FROM Document d GROUP BY TYPE(d)")
List<Object[]> countByType();

}

public interface DocumentTexteRepository extends JpaRepository<DocumentTexte, Long>

{

List<DocumentTexte> findByNombreMotsGreaterThan(Integer nombreMots) ;
@Query("SELECT d FROM DocumentTexte d WHERE d.contenu LIKE %:mot%")
List<DocumentTexte> rechercherParContenu(@Param("mot") String mot);

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

List<DocumentTexte> findByFormat(FormatTexte format);

}

public interface DocumentImageRepository extends JpaRepository<DocumentImage, Long>
{
List<DocumentImage> findByFormat(String format);
List<DocumentImage> findByLargeurGreaterThanAndHauteurGreaterThan (
Integer largeurMin, Integer hauteurMin);

}

public interface DocumentPdfRepository extends JpaRepository<DocumentPdf, Long> {
List<DocumentPdf> findByNombrePagesGreaterThan(Integer nombrePages);
List<DocumentPdf> findByEstProtege(Boolean protege);

}

// Service

@Service

public class DocumentService {
@Autowired
private DocumentRepository documentRepository;
@Autowired
private DocumentTexteRepository documentTexteRepository;
@Autowired

private DocumentImageRepository documentImageRepository;
public List<Document> documentsParUtilisateur(Utilisateur utilisateur) {
return documentRepository.findByAuteur(utilisateur);
}
public Map<String, Long> statistiquesParType() {
List<Object[]> results = documentRepository.countByType();
return results.stream()
.collect(Collectors.toMap(
arr -> ((Class<?>) arr[0]).getSimpleName(),
arr -> (Long) arr[1]
));
}
public List<DocumentTexte> rechercherTexte(String recherche) {
return documentTexteRepository.rechercherParContenu(recherche);
}
public Long calculerEspaceUtilise(Utilisateur utilisateur) {
return documentRepository.findByAuteur(utilisateur).stream()
.filter(d -> d instanceof DocumentImage || d instanceof DocumentPdf ||
d instanceof DocumentVideo)
.mapToLong(d -> {
if (d instanceof DocumentImage) {
return ((DocumentImage) d).getTailleFichier();
} else if (d instanceof DocumentPdf) {
return ((DocumentPdf) d).getTailleFichier();
} else if (d instanceof DocumentVideo) {
return ((DocumentVideo) d).getTailleFichier();

}

return OL;
b
.sum();

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 15/25 Héritage avec Spring Data JPA

Exemple 3 : Audit avec @MappedSuperclass

@MappedSuperclass
@EntityListeners(AuditingEntitylListener.class)
public abstract class EntiteAuditee {
@CreatedDate
@Column(nullable = false, updatable = false)
private LocalDateTime dateCreation;
@LastModifiedDate
@Column(nullable = false)
private LocalDateTime dateModification;
@CreatedBy
@Column(nullable = false, updatable = false)
private String creerPar;
@LastModifiedBy
@Column(nullable = false)
private String modifierPar;
@Version
private Integer version; // Pour 1'optimistic locking
// getters/setters
}

// Configuration Spring pour 1'audit
@Configuration
@EnableJpaAuditing
public class JpaAuditConfig {
@Bean
public AuditorAware<String> auditorProvider() {
return () -> {
// Récupere l'utilisateur connecté depuis Spring Security
Authentication authentication = SecurityContextHolder

.getContext()
.getAuthentication();
if (authentication == null || 'authentication.isAuthenticated()) {

return Optional.of("system");

}

return Optional.of (authentication.getName());

}

// Utilisation dans les entités
@Entity

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

public class Produit extends EntiteAuditee {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String nom;
private String reference;
private Double prix;
@Enumerated (EnumType.STRING)
private CategorieProduit categorie;
// getters/setters
}

@Entity
public class Commande extends EntiteAuditee {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String numero;
private Double total;
@Enumerated(EnumType.STRING)
private StatutCommande statut;
@OneToMany (mappedBy = "commande", cascade = CascadeType.ALL)
private List<LigneCommande> lignes = new ArraylList<>();
// getters/setters
}

@Entity
public class Client extends EntiteAuditee {
@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private Long id;
private String nom;
private String prenom;
private String email;
@OneToMany (mappedBy = "client")
private List<Commande> commandes = new ArraylList<>();
// getters/setters
}

// Service utilisant 1'audit
@Service
public class AuditService {
@Autowired
private ProduitRepository produitRepository;
public List<Produit> produitsModifiesRecemment(int heures) {
LocalDateTime limite = LocalDateTime.now().minusHours(heures);
return produitRepository.findAll().stream()
.filter(p -> p.getDateModification().isAfter(limite))
.collect(Collectors.tolList());
}
public Map<String, Long> statistiquesModificationsParUtilisateur() {
return produitRepository.findAll().stream()
.collect(Collectors.groupingBy (
EntiteAuditee: :getModifierPar,
Collectors.counting()

));

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 17/25 Héritage avec Spring Data JPA

}

Comparaison des Stratégies

Critére SINGLE_TABLE|JOINED [TABLE_PER _CLASS
Performance lecture oo oo oo

Performance écriture o0 oo oog

Normalisation 0 0 A

Colonnes NULL Beaucoup Aucune |Aucune

Requétes polymorphiques|] 00] (UNION)
Complexité Simple Moyenne|Complexe
Evolutivité 00 000 0

Intégrité référentielle A 0 A

Taille base de données Moyenne Grande |Grande

Bonnes Pratiques

] A FAIRE

// Peu de différences entre sous-classes -» SINGLE TABLE
@Entity

@Inheritance(strategy = InheritanceType.SINGLE TABLE)
public abstract class Notification { }

// Beaucoup de champs spécifiques - JOINED
@Entity

@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Document { }

// Classes trés distinctes - TABLE PER CLASS (rare)
@Entity

@Inheritance(strategy = InheritanceType.TABLE PER CLASS)
public abstract class Support { }

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

// [0 BON
public abstract class Personne { }

// [0 MAUVAIS (sauf cas spécifique)
public class Personne { }

// [0 BON
@iscriminatorColumn(name = "type entite")
@iscriminatorValue("ETUDIANT")

// al] Moins clair
@iscriminatorValue("E") // Trop court, peu lisible

// [1 BON
public interface PersonneRepository extends JpaRepository<Personne, Long>
{1}

public interface EtudiantRepository extends JpaRepository<Etudiant, Long>

{1}

public interface ProfesseurRepository extends JpaRepository<Professeur,
Long> { }

// Permet des requétes spécifiques ET polymorphiques

// [0 BON pour l'audit, timestamps, champs communs non métier
@MappedSuperclass
public abstract class BaseEntity {

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 19/25 Héritage avec Spring Data JPA

private LocalDateTime createdAt;
private LocalDateTime updatedAt;

@Entity
public abstract class Paiement {
// Méthode abstraite pour forcer 1'implémentation
public abstract String getMethodeDescription();
// Méthode commune
public boolean estValide() {
return montant !'= null && montant > 0;

}

0 A EVITER

// [0 IMPOSSIBLE

@Entity

@Inheritance(strategy = InheritanceType.SINGLE TABLE)
public abstract class Personne { }

@Entity
@Inheritance(strategy = InheritanceType.JOINED) // [J Conflit !
public class Etudiant extends Personne { }

// a[] Fonctionne mais utilise le nom de la classe

@Entity

public class Etudiant extends Personne { } // Discriminateur =
"Etudiant"

// [] Meilleur

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

@Entity
@iscriminatorValue("ETUDIANT")
public class Etudiant extends Personne { }

// [0 MAUVAIS : génere des UNION trés lentes

@Entity

@Inheritance(strategy = InheritanceType.TABLE PER CLASS)
public abstract class Document { }

// Service avec requétes polymorphiques fréquentes
documentRepository.findAll(); // [UNION sur toutes les tables !

// [0 MAUVAIS : trop de niveaux
Personne
- Employe
- Cadre
- Directeur
- DirecteurGeneral

// [0 BON : maximum 2-3 niveaux
Personne

- Etudiant

- Professeur

- Administrateur

// [] MAUVAIS : utiliser @Inheritance

@Entity

@Inheritance(strategy = InheritanceType.SINGLE TABLE)
public abstract class EntiteAvecTimestamps { }

// [0 BON : utiliser @MappedSuperclass
@MappedSuperclass

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 21/25 Héritage avec Spring Data JPA

I public abstract class EntiteAvecTimestamps { }
| |

Cas d'Usage Réels

E-commerce

// SINGLE TABLE pour Produit (peu de différences)
@Entity
@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@iscriminatorColumn(name = "type produit")
public abstract class Produit {

@Id

private Long id;

private String nom;

private Double prix;

}

@Entity

@DiscriminatorValue("PHYSIQUE")

public class ProduitPhysique extends Produit {
private Double poids;
private String dimensionsEmballage;

}

@Entity

@DiscriminatorValue("NUMERIQUE")

public class ProduitNumerique extends Produit {
private String urlTelechargement;
private Integer nombreTelechargements;

}

// JOINED pour Utilisateur (différences importantes)
@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Utilisateur {

@Id

private Long id;

private String email;

private String motDePasse;

}

@Entity

public class Client extends Utilisateur {
private String adresselLivraison;
@0neToMany (mappedBy = "client")
private List<Commande> commandes;

}

@Entity

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

public class Vendeur extends Utilisateur {
private String nomBoutique;
@OneToMany (mappedBy = "vendeur")
private List<Produit> produits;

}

@Entity
public class Administrateur extends Utilisateur {
private Set<String> permissions;

}

// @MappedSuperclass pour l'audit

@MappedSuperclass

public abstract class EntiteAuditee {
private LocalDateTime createdAt;
private LocalDateTime updatedAt;

Systeme bancaire

// JOINED pour Compte (intégrité critique)
@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Compte {

@Id

private Long id;

private String numero;

private Double solde;

@anyToOne

private Client proprietaire;

}

@Entity

public class CompteCourant extends Compte {
private Double decouvertAutorise;
private Double fraisTenus;
private Boolean carteAssociee;

}

@Entity

public class CompteEpargne extends Compte {
private Double tauxInteret;
private LocalDate dateOuverture;
private Integer nombreRetraitsAnnuels;

}

@Entity

public class Compteleune extends Compte {
private LocalDate dateNaissance;
private String nomResponsable;
private Double plafondOperations;

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 23/25 Héritage avec Spring Data JPA

// SINGLE TABLE pour Transaction (performances)
@Entity
@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@iscriminatorColumn(name = "type transaction")
public abstract class Transaction {

@Id

private Long id;

private Double montant;

private LocalDateTime date;

@anyToOne

private Compte compte;

}

@Entity

@DiscriminatorValue("DEPOT")

public class Depot extends Transaction {
private String origine;

}

@Entity

@DiscriminatorValue("RETRAIT")

public class Retrait extends Transaction {
private String destination;
private String autorisationCode;

}

@Entity

@DiscriminatorValue("VIREMENT")

public class Virement extends Transaction {
@ManyToOne
private Compte compteDestination;
private String reference;

Plateforme éducative

// JOINED pour Personne (structure complexe)
@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Personne {

@Id

private Long id;

private String nom;

private String prenom;

private String email;

}

@Entity

public class Etudiant extends Personne {
private String numeroEtudiant;
private Integer promotion;
@ManyToMany
@JoinTable(

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

name = "inscription",
joinColumns = @JoinColumn(name = "etudiant id"),
inverseJoinColumns = @JoinColumn(name = "cours_ id")

)

private Set<Cours> cours = new HashSet<>();

}

@Entity
public class Professeur extends Personne {
private String specialite;
private String bureau;
@0OneToMany (mappedBy = "professeur")
private Set<Cours> coursEnseignes = new HashSet<>();

}

@Entity

public class Administrateur extends Personne {
private String departement;
private Set<String> permissions;

}

// SINGLE TABLE pour Contenu (types variés, requétes fréquentes)
@Entity
@Inheritance(strategy = InheritanceType.SINGLE TABLE)
@iscriminatorColumn(name = "type contenu")
public abstract class Contenu {

@Id

private Long id;

private String titre;

@ManyToOne

private Cours cours;

}

@Entity

@DiscriminatorValue("VIDEO")

public class Video extends Contenu {
private String url;
private Integer dureeSecondes;

}

@Entity

@iscriminatorValue("PDF")

public class DocumentPdf extends Contenu {
private String fichier;
private Integer nombrePages;

}

@Entity

@DiscriminatorValue("QUIZ")

public class Quiz extends Contenu {
private Integer dureeMinutes;
@OneToMany (mappedBy = "quiz")
private List<Question> questions;

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2026/01/30 04:48 25/25 Héritage avec Spring Data JPA

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/framework-web/spring/inheritance

Last update: 2025/10/07 17:42

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/framework-web/spring/inheritance

	Héritage avec Spring Data JPA
	Introduction
	Les Stratégies d'Héritage JPA
	1. SINGLE_TABLE (Table unique)
	Principe
	Code
	Table résultante

	2. JOINED (Table par classe)
	Principe
	Code
	Tables résultantes

	3. TABLE_PER_CLASS (Table par classe concrète)
	Principe
	Code
	Tables résultantes

	@MappedSuperclass (Alternative à l'héritage)
	Principe
	Code
	Tables résultantes

	Repositories Spring Data JPA
	Repositories de base
	Requêtes polymorphiques

	Annotations importantes
	@Inheritance
	@DiscriminatorColumn (pour SINGLE_TABLE)
	@DiscriminatorValue
	@PrimaryKeyJoinColumn (pour JOINED)

	Exemples Pratiques Complets
	Exemple 1 : Système de paiement (SINGLE_TABLE)
	Exemple 2 : Système de documents (JOINED)
	Exemple 3 : Audit avec @MappedSuperclass

	Comparaison des Stratégies
	Bonnes Pratiques
	✅ À FAIRE
	❌ À ÉVITER

	Cas d'Usage Réels
	E-commerce
	Système bancaire
	Plateforme éducative

