
2026/01/30 04:48 1/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Héritage avec Spring Data JPA

Introduction

L'héritage est un concept fondamental de la POO qui peut être mappé en base de données de différentes
manières avec JPA. JPA propose 3 stratégies principales définies par l'annotation @Inheritance.

Les Stratégies d'Héritage JPA

1. SINGLE_TABLE (Table unique)

Principe

Toutes les classes de la hiérarchie sont stockées dans une seule table avec une colonne discriminante.

Code

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "type_personne", discriminatorType =
DiscriminatorType.STRING)
public abstract class Personne {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;
 private String nom;
 private String prenom;
 // getters/setters
}

@Entity
@DiscriminatorValue("ETUDIANT")
public class Etudiant extends Personne {
 private String numeroEtudiant;
 private Integer promotion;
 // getters/setters
}

@Entity
@DiscriminatorValue("PROFESSEUR")
public class Professeur extends Personne {
 private String specialite;
 private Double salaire;
 // getters/setters
}

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

Table résultante

CREATE TABLE personne (
 id BIGINT PRIMARY KEY,
 type_personne VARCHAR(31), -- Colonne discriminante
 nom VARCHAR(255),
 prenom VARCHAR(255),
 numero_etudiant VARCHAR(255), -- NULL pour professeurs
 promotion INT, -- NULL pour professeurs
 specialite VARCHAR(255), -- NULL pour étudiants
 salaire DOUBLE -- NULL pour étudiants
);

Avantages :

Performance excellente (pas de JOIN)
Requêtes polymorphiques simples
Une seule table à gérer

Inconvénients :

Beaucoup de colonnes NULL
Violation de la normalisation
Contraintes d'intégrité difficiles

Cas d'usage : Hiérarchies simples, peu de champs spécifiques par sous-classe.

2. JOINED (Table par classe)

Principe

Une table pour chaque classe de la hiérarchie, liées par clé étrangère vers la table parent.

Code

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Personne {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)

2026/01/30 04:48 3/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 private Long id;
 private String nom;
 private String prenom;
 // getters/setters
}

@Entity
public class Etudiant extends Personne {
 private String numeroEtudiant;
 private Integer promotion;
 // getters/setters
}

@Entity
public class Professeur extends Personne {
 private String specialite;
 private Double salaire;
 // getters/setters
}

Tables résultantes

CREATE TABLE personne (
 id BIGINT PRIMARY KEY,
 nom VARCHAR(255),
 prenom VARCHAR(255)
);

CREATE TABLE etudiant (
 id BIGINT PRIMARY KEY,
 numero_etudiant VARCHAR(255),
 promotion INT,
 FOREIGN KEY (id) REFERENCES personne(id)
);

CREATE TABLE professeur (
 id BIGINT PRIMARY KEY,
 specialite VARCHAR(255),
 salaire DOUBLE,
 FOREIGN KEY (id) REFERENCES personne(id)
);

✅ Avantages :

Normalisation respectée
Pas de colonnes NULL
Structure claire et maintenable
Contraintes d'intégrité faciles

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

❌ Inconvénients :

Performances (JOINs nécessaires pour chaque requête)
Requêtes plus complexes

� Cas d'usage : Hiérarchies complexes, intégrité des données importante, nombreux champs
spécifiques.

3. TABLE_PER_CLASS (Table par classe concrète)

Principe

Une table complète pour chaque classe concrète (pas de table pour la classe abstraite). Les champs du
parent sont dupliqués dans chaque table enfant.

Code

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class Personne {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO) // Attention au type de
génération
 private Long id;
 private String nom;
 private String prenom;
 // getters/setters
}

@Entity
public class Etudiant extends Personne {
 private String numeroEtudiant;
 private Integer promotion;
 // getters/setters
}

@Entity
public class Professeur extends Personne {
 private String specialite;
 private Double salaire;
 // getters/setters
}

Tables résultantes

2026/01/30 04:48 5/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

-- Pas de table personne !

CREATE TABLE etudiant (
 id BIGINT PRIMARY KEY,
 nom VARCHAR(255), -- Dupliqué
 prenom VARCHAR(255), -- Dupliqué
 numero_etudiant VARCHAR(255),
 promotion INT
);

CREATE TABLE professeur (
 id BIGINT PRIMARY KEY,
 nom VARCHAR(255), -- Dupliqué
 prenom VARCHAR(255), -- Dupliqué
 specialite VARCHAR(255),
 salaire DOUBLE
);

✅ Avantages :

Pas de colonnes NULL
Bonnes performances pour requêtes sur une classe spécifique
Isolation complète des données

❌ Inconvénients :

Duplication des colonnes communes
Requêtes polymorphiques très lentes (nécessite des UNION)
Gestion des IDs complexe
Difficile à maintenir

� Cas d'usage : Classes très différentes, peu ou pas de requêtes polymorphiques.

@MappedSuperclass (Alternative à l'héritage)

Principe

La classe parente n'est PAS une entité, elle sert uniquement de modèle pour partager des champs communs.
Aucune table n'est créée pour elle, et aucune requête polymorphique n'est possible.

Code

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

@MappedSuperclass
public abstract class EntiteAuditee {
 @CreatedDate
 private LocalDateTime dateCreation;
 @LastModifiedDate
 private LocalDateTime dateModification;
 @CreatedBy
 private String creerPar;
 @LastModifiedBy
 private String modifierPar;
 // getters/setters
}

@Entity
public class Produit extends EntiteAuditee {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;
 private String nom;
 private Double prix;
 // getters/setters
}

@Entity
public class Commande extends EntiteAuditee {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;
 private String numero;
 private Double total;
 // getters/setters
}

Tables résultantes

-- Pas de table entite_auditee !

CREATE TABLE produit (
 id BIGINT PRIMARY KEY,
 nom VARCHAR(255),
 prix DOUBLE,
 date_creation TIMESTAMP,
 date_modification TIMESTAMP,
 creer_par VARCHAR(255),
 modifier_par VARCHAR(255)
);

CREATE TABLE commande (
 id BIGINT PRIMARY KEY,
 numero VARCHAR(255),
 total DOUBLE,
 date_creation TIMESTAMP,
 date_modification TIMESTAMP,

2026/01/30 04:48 7/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 creer_par VARCHAR(255),
 modifier_par VARCHAR(255)
);

✅ Avantages :

Réutilisation du code (DRY)
Pas de complexité d'héritage en base
Chaque table est indépendante
Performances optimales

❌ Inconvénients :

Pas de requêtes polymorphiques possibles
Pas de relations vers la classe parente
Pas d'identité commune en base

� Cas d'usage : Partage de champs communs (audit, timestamps, champs techniques), sans
relation d'héritage métier.

Repositories Spring Data JPA

Repositories de base

// Repository pour le parent (requêtes polymorphiques)
public interface PersonneRepository extends JpaRepository<Personne, Long> {
 List<Personne> findByNom(String nom);
 // Retourne TOUS les types (Etudiant + Professeur)
 List<Personne> findByPrenomContaining(String prenom);
}

// Repository spécifique pour Etudiant
public interface EtudiantRepository extends JpaRepository<Etudiant, Long> {
 List<Etudiant> findByPromotion(Integer promotion);
 @Query("SELECT e FROM Etudiant e WHERE e.numeroEtudiant = :numero")
 Optional<Etudiant> findByNumero(@Param("numero") String numero);
 // Requête spécifique aux étudiants
 List<Etudiant> findByPromotionGreaterThan(Integer promotion);
}

// Repository spécifique pour Professeur
public interface ProfesseurRepository extends JpaRepository<Professeur, Long> {
 List<Professeur> findBySpecialite(String specialite);
 List<Professeur> findBySalaireGreaterThan(Double salaire);

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

 @Query("SELECT p FROM Professeur p WHERE p.specialite LIKE %:mot%")
 List<Professeur> rechercherParSpecialite(@Param("mot") String mot);
}

Bonne pratique : Créer un repository pour chaque type (parent et enfants) permet d'avoir des
méthodes spécifiques tout en conservant les requêtes polymorphiques.

Requêtes polymorphiques

@Service
public class PersonneService {
 @Autowired
 private PersonneRepository personneRepository;
 @Autowired
 private EtudiantRepository etudiantRepository;
 @Autowired
 private ProfesseurRepository professeurRepository;
 // Récupère TOUS les types (Etudiant + Professeur)
 public List<Personne> toutesLesPersonnes() {
 return personneRepository.findAll();
 }
 // Filtrage par type avec instanceOf
 public List<Etudiant> seulementLesEtudiants() {
 return personneRepository.findAll().stream()
 .filter(p -> p instanceof Etudiant)
 .map(p -> (Etudiant) p)
 .collect(Collectors.toList());
 }
 // Meilleure approche : utiliser le repository spécifique
 public List<Etudiant> tousLesEtudiants() {
 return etudiantRepository.findAll();
 }
 // Utilisation de TYPE() dans JPQL
 @Query("SELECT p FROM Personne p WHERE TYPE(p) = Etudiant")
 List<Etudiant> findAllEtudiants();
 @Query("SELECT p FROM Personne p WHERE TYPE(p) = Professeur")
 List<Professeur> findAllProfesseurs();
 // Filtrage multiple
 @Query("SELECT p FROM Personne p WHERE TYPE(p) IN (Etudiant, Professeur)")
 List<Personne> findAllPersonnesSpecifiques();
 // Requête polymorphique avec condition
 @Query("SELECT p FROM Personne p WHERE p.nom = :nom AND TYPE(p) = Etudiant")
 List<Etudiant> findEtudiantsByNom(@Param("nom") String nom);
}

Attention : Les requêtes polymorphiques sur PersonneRepository retournent tous les sous-
types. Utilisez les repositories spécifiques pour des requêtes ciblées.

2026/01/30 04:48 9/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Annotations importantes

@Inheritance

@Inheritance(strategy = InheritanceType.SINGLE_TABLE) // ou JOINED,
TABLE_PER_CLASS

// Paramètres possibles :
// - InheritanceType.SINGLE_TABLE : table unique (défaut)
// - InheritanceType.JOINED : table par classe
// - InheritanceType.TABLE_PER_CLASS : table par classe concrète

@DiscriminatorColumn (pour SINGLE_TABLE)

@DiscriminatorColumn(
 name = "type_entite", // Nom de la colonne (défaut :
DTYPE)
 discriminatorType = DiscriminatorType.STRING, // STRING, INTEGER, CHAR
 length = 50 // Taille (pour STRING)
)

// Exemples :
@DiscriminatorColumn(name = "type") // VARCHAR(31) par défaut
@DiscriminatorColumn(name = "categorie", length = 100)
@DiscriminatorColumn(name = "type_id", discriminatorType =
DiscriminatorType.INTEGER)

Obligatoire avec SINGLE_TABLE (créée automatiquement avec le nom DTYPE si non spécifiée).

Non utilisée avec JOINED et TABLE_PER_CLASS.

@DiscriminatorValue

@DiscriminatorValue("ETUDIANT") // Valeur dans la colonne discriminante

// Si non spécifié, utilise le nom de la classe par défaut
@Entity
@DiscriminatorValue("PROF") // Personnalisé
public class Professeur extends Personne { }

@Entity // Utilisera "Etudiant" par défaut
public class Etudiant extends Personne { }

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

@PrimaryKeyJoinColumn (pour JOINED)

@Entity
@PrimaryKeyJoinColumn(name = "etudiant_id") // Personnalise le nom de la FK
public class Etudiant extends Personne {
 // Par défaut, la FK aurait été nommée "id"
}

// Avec plusieurs colonnes (cas rare)
@Entity
@PrimaryKeyJoinColumn(name = "id_etudiant", referencedColumnName = "id")
public class Etudiant extends Personne { }

Exemples Pratiques Complets

Exemple 1 : Système de paiement (SINGLE_TABLE)

@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "payment_type")
public abstract class Paiement {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;
 private Double montant;
 private LocalDateTime date;
 @ManyToOne
 @JoinColumn(name = "commande_id")
 private Commande commande;
 // Méthode abstraite pour le polymorphisme
 public abstract String getMethodeDescription();
}

@Entity
@DiscriminatorValue("CARTE")
public class PaiementCarte extends Paiement {
 private String numeroCarte;
 private String cvv;
 private String nomTitulaire;
 @Override
 public String getMethodeDescription() {
 return "Carte bancaire";
 }
}

@Entity
@DiscriminatorValue("PAYPAL")
public class PaiementPaypal extends Paiement {
 private String email;

2026/01/30 04:48 11/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 private String transactionId;
 @Override
 public String getMethodeDescription() {
 return "PayPal";
 }
}

@Entity
@DiscriminatorValue("VIREMENT")
public class PaiementVirement extends Paiement {
 private String iban;
 private String bic;
 private String reference;
 @Override
 public String getMethodeDescription() {
 return "Virement bancaire";
 }
}

// Repositories
public interface PaiementRepository extends JpaRepository<Paiement, Long> {
 List<Paiement> findByMontantGreaterThan(Double montant);
 @Query("SELECT p FROM Paiement p WHERE TYPE(p) = PaiementCarte")
 List<PaiementCarte> findAllPaiementsCarte();
 @Query("SELECT p FROM Paiement p WHERE p.date BETWEEN :debut AND :fin")
 List<Paiement> findByDateBetween(@Param("debut") LocalDateTime debut,
 @Param("fin") LocalDateTime fin);
}

public interface PaiementCarteRepository extends JpaRepository<PaiementCarte, Long>
{
 Optional<PaiementCarte> findByNumeroCarte(String numeroCarte);
}

// Service
@Service
public class PaiementService {
 @Autowired
 private PaiementRepository paiementRepository;
 public void traiterPaiement(Paiement paiement) {
 paiementRepository.save(paiement);
 // Traitement spécifique selon le type
 if (paiement instanceof PaiementCarte carte) {
 // Logique spécifique carte
 validerCarte(carte);
 } else if (paiement instanceof PaiementPaypal paypal) {
 // Logique spécifique PayPal
 verifierTransactionPaypal(paypal);
 } else if (paiement instanceof PaiementVirement virement) {
 // Logique spécifique virement
 validerIban(virement);
 }
 }
 public Map<String, Long> statistiquesParType() {
 return paiementRepository.findAll().stream()
 .collect(Collectors.groupingBy(

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

 p -> p.getClass().getSimpleName(),
 Collectors.counting()
));
 }
 public Double montantTotalParType(String type) {
 return paiementRepository.findAll().stream()
 .filter(p -> p.getClass().getSimpleName().equals(type))
 .mapToDouble(Paiement::getMontant)
 .sum();
 }
 private void validerCarte(PaiementCarte carte) {
 // Logique de validation
 }
 private void verifierTransactionPaypal(PaiementPaypal paypal) {
 // Logique de vérification
 }
 private void validerIban(PaiementVirement virement) {
 // Logique de validation
 }
}

Pourquoi SINGLE_TABLE ici ?

Peu de différences entre les types de paiement
Requêtes fréquentes sur tous les paiements
Performance importante pour le traitement

Exemple 2 : Système de documents (JOINED)

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Document {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;
 private String titre;
 private LocalDateTime dateCreation;
 private String description;
 @ManyToOne(fetch = FetchType.LAZY)
 @JoinColumn(name = "utilisateur_id")
 private Utilisateur auteur;
 @Enumerated(EnumType.STRING)
 private StatutDocument statut;
 // getters/setters
}

@Entity
public class DocumentTexte extends Document {
 @Lob
 @Column(columnDefinition = "TEXT")

2026/01/30 04:48 13/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 private String contenu;
 private Integer nombreMots;
 private Integer nombreParagraphes;
 @Enumerated(EnumType.STRING)
 private FormatTexte format; // MARKDOWN, HTML, PLAIN
 // getters/setters
}

@Entity
public class DocumentImage extends Document {
 private String url;
 private Integer largeur;
 private Integer hauteur;
 private String format; // PNG, JPG, GIF, etc.
 private Long tailleFichier;
 @Column(columnDefinition = "TEXT")
 private String altText;
 // getters/setters
}

@Entity
public class DocumentPdf extends Document {
 private String cheminFichier;
 private Integer nombrePages;
 private Long tailleFichier;
 private Boolean estProtege;
 @Column(columnDefinition = "TEXT")
 private String metadonnees;
 // getters/setters
}

@Entity
public class DocumentVideo extends Document {
 private String url;
 private Integer dureeSecondes;
 private String codec;
 private String resolution;
 private Long tailleFichier;
 // getters/setters
}

// Repositories
public interface DocumentRepository extends JpaRepository<Document, Long> {
 List<Document> findByAuteur(Utilisateur auteur);
 @Query("SELECT d FROM Document d WHERE d.dateCreation BETWEEN :debut AND :fin")
 List<Document> findByPeriode(@Param("debut") LocalDateTime debut,
 @Param("fin") LocalDateTime fin);
 @Query("SELECT TYPE(d), COUNT(d) FROM Document d GROUP BY TYPE(d)")
 List<Object[]> countByType();
}

public interface DocumentTexteRepository extends JpaRepository<DocumentTexte, Long>
{
 List<DocumentTexte> findByNombreMotsGreaterThan(Integer nombreMots);
 @Query("SELECT d FROM DocumentTexte d WHERE d.contenu LIKE %:mot%")
 List<DocumentTexte> rechercherParContenu(@Param("mot") String mot);

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

 List<DocumentTexte> findByFormat(FormatTexte format);
}

public interface DocumentImageRepository extends JpaRepository<DocumentImage, Long>
{
 List<DocumentImage> findByFormat(String format);
 List<DocumentImage> findByLargeurGreaterThanAndHauteurGreaterThan(
 Integer largeurMin, Integer hauteurMin);
}

public interface DocumentPdfRepository extends JpaRepository<DocumentPdf, Long> {
 List<DocumentPdf> findByNombrePagesGreaterThan(Integer nombrePages);
 List<DocumentPdf> findByEstProtege(Boolean protege);
}

// Service
@Service
public class DocumentService {
 @Autowired
 private DocumentRepository documentRepository;
 @Autowired
 private DocumentTexteRepository documentTexteRepository;
 @Autowired
 private DocumentImageRepository documentImageRepository;
 public List<Document> documentsParUtilisateur(Utilisateur utilisateur) {
 return documentRepository.findByAuteur(utilisateur);
 }
 public Map<String, Long> statistiquesParType() {
 List<Object[]> results = documentRepository.countByType();
 return results.stream()
 .collect(Collectors.toMap(
 arr -> ((Class<?>) arr[0]).getSimpleName(),
 arr -> (Long) arr[1]
));
 }
 public List<DocumentTexte> rechercherTexte(String recherche) {
 return documentTexteRepository.rechercherParContenu(recherche);
 }
 public Long calculerEspaceUtilise(Utilisateur utilisateur) {
 return documentRepository.findByAuteur(utilisateur).stream()
 .filter(d -> d instanceof DocumentImage || d instanceof DocumentPdf ||
d instanceof DocumentVideo)
 .mapToLong(d -> {
 if (d instanceof DocumentImage) {
 return ((DocumentImage) d).getTailleFichier();
 } else if (d instanceof DocumentPdf) {
 return ((DocumentPdf) d).getTailleFichier();
 } else if (d instanceof DocumentVideo) {
 return ((DocumentVideo) d).getTailleFichier();
 }
 return 0L;
 })
 .sum();
 }
}

2026/01/30 04:48 15/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Pourquoi JOINED ici ?

Beaucoup de champs spécifiques à chaque type
Intégrité des données importante
Différences significatives entre les types
Structure évolutive (facile d'ajouter de nouveaux types)

Exemple 3 : Audit avec @MappedSuperclass

@MappedSuperclass
@EntityListeners(AuditingEntityListener.class)
public abstract class EntiteAuditee {
 @CreatedDate
 @Column(nullable = false, updatable = false)
 private LocalDateTime dateCreation;
 @LastModifiedDate
 @Column(nullable = false)
 private LocalDateTime dateModification;
 @CreatedBy
 @Column(nullable = false, updatable = false)
 private String creerPar;
 @LastModifiedBy
 @Column(nullable = false)
 private String modifierPar;
 @Version
 private Integer version; // Pour l'optimistic locking
 // getters/setters
}

// Configuration Spring pour l'audit
@Configuration
@EnableJpaAuditing
public class JpaAuditConfig {
 @Bean
 public AuditorAware<String> auditorProvider() {
 return () -> {
 // Récupère l'utilisateur connecté depuis Spring Security
 Authentication authentication = SecurityContextHolder
 .getContext()
 .getAuthentication();
 if (authentication == null || !authentication.isAuthenticated()) {
 return Optional.of("system");
 }
 return Optional.of(authentication.getName());
 };
 }
}

// Utilisation dans les entités
@Entity

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

public class Produit extends EntiteAuditee {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;
 private String nom;
 private String reference;
 private Double prix;
 @Enumerated(EnumType.STRING)
 private CategorieProduit categorie;
 // getters/setters
}

@Entity
public class Commande extends EntiteAuditee {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;
 private String numero;
 private Double total;
 @Enumerated(EnumType.STRING)
 private StatutCommande statut;
 @OneToMany(mappedBy = "commande", cascade = CascadeType.ALL)
 private List<LigneCommande> lignes = new ArrayList<>();
 // getters/setters
}

@Entity
public class Client extends EntiteAuditee {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Long id;
 private String nom;
 private String prenom;
 private String email;
 @OneToMany(mappedBy = "client")
 private List<Commande> commandes = new ArrayList<>();
 // getters/setters
}

// Service utilisant l'audit
@Service
public class AuditService {
 @Autowired
 private ProduitRepository produitRepository;
 public List<Produit> produitsModifiesRecemment(int heures) {
 LocalDateTime limite = LocalDateTime.now().minusHours(heures);
 return produitRepository.findAll().stream()
 .filter(p -> p.getDateModification().isAfter(limite))
 .collect(Collectors.toList());
 }
 public Map<String, Long> statistiquesModificationsParUtilisateur() {
 return produitRepository.findAll().stream()
 .collect(Collectors.groupingBy(
 EntiteAuditee::getModifierPar,
 Collectors.counting()
));

2026/01/30 04:48 17/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 }
}

Avantages de @MappedSuperclass pour l'audit :

Code DRY : champs d'audit définis une seule fois
Appliqué automatiquement à toutes les entités qui héritent
Pas de complexité en base de données
Fonctionne avec toutes les stratégies d'héritage

Comparaison des Stratégies
Critère SINGLE_TABLE JOINED TABLE_PER_CLASS
Performance lecture ⭐⭐⭐ ⭐⭐ ⭐⭐
Performance écriture ⭐⭐⭐ ⭐⭐ ⭐⭐⭐
Normalisation ❌ ✅ ⚠️
Colonnes NULL Beaucoup Aucune Aucune
Requêtes polymorphiques ⭐⭐⭐ ⭐⭐ ⭐ (UNION)
Complexité Simple Moyenne Complexe
Évolutivité ⭐⭐ ⭐⭐⭐ ⭐
Intégrité référentielle ⚠️ ✅ ⚠️
Taille base de données Moyenne Grande Grande

Bonnes Pratiques

✅ À FAIRE

1. Choisir la bonne stratégie selon le contexte

// Peu de différences entre sous-classes → SINGLE_TABLE
@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
public abstract class Notification { }

// Beaucoup de champs spécifiques → JOINED
@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Document { }

// Classes très distinctes → TABLE_PER_CLASS (rare)
@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class Support { }

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

2. Utiliser des classes abstraites pour les parents

// ✅ BON
public abstract class Personne { }

// ❌ MAUVAIS (sauf cas spécifique)
public class Personne { }

3. Nommer explicitement les colonnes discriminantes

// ✅ BON
@DiscriminatorColumn(name = "type_entite")
@DiscriminatorValue("ETUDIANT")

// ⚠️ Moins clair
@DiscriminatorValue("E") // Trop court, peu lisible

4. Créer des repositories pour chaque type

// ✅ BON
public interface PersonneRepository extends JpaRepository<Personne, Long>
{ }
public interface EtudiantRepository extends JpaRepository<Etudiant, Long>
{ }
public interface ProfesseurRepository extends JpaRepository<Professeur,
Long> { }

// Permet des requêtes spécifiques ET polymorphiques

5. Utiliser @MappedSuperclass pour les champs techniques

// ✅ BON pour l'audit, timestamps, champs communs non métier
@MappedSuperclass
public abstract class BaseEntity {

2026/01/30 04:48 19/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 private LocalDateTime createdAt;
 private LocalDateTime updatedAt;
}

6. Implémenter des méthodes helper pour le polymorphisme

@Entity
public abstract class Paiement {
 // Méthode abstraite pour forcer l'implémentation
 public abstract String getMethodeDescription();
 // Méthode commune
 public boolean estValide() {
 return montant != null && montant > 0;
 }
}

❌ À ÉVITER

1. Mélanger les stratégies dans une même hiérarchie

// ❌ IMPOSSIBLE
@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
public abstract class Personne { }

@Entity
@Inheritance(strategy = InheritanceType.JOINED) // ❌ Conflit !
public class Etudiant extends Personne { }

2. Oublier @DiscriminatorValue avec SINGLE_TABLE

// ⚠️ Fonctionne mais utilise le nom de la classe
@Entity
public class Etudiant extends Personne { } // Discriminateur =
"Etudiant"

// ✅ Meilleur

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

@Entity
@DiscriminatorValue("ETUDIANT")
public class Etudiant extends Personne { }

3. Utiliser TABLE_PER_CLASS avec requêtes polymorphiques fréquentes

// ❌ MAUVAIS : génère des UNION très lentes
@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class Document { }

// Service avec requêtes polymorphiques fréquentes
documentRepository.findAll(); // ❌ UNION sur toutes les tables !

4. Créer des hiérarchies trop profondes

// ❌ MAUVAIS : trop de niveaux
Personne
 → Employe
 → Cadre
 → Directeur
 → DirecteurGeneral

// ✅ BON : maximum 2-3 niveaux
Personne
 → Etudiant
 → Professeur
 → Administrateur

5. Utiliser @Inheritance pour du code partagé non métier

// ❌ MAUVAIS : utiliser @Inheritance
@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
public abstract class EntiteAvecTimestamps { }

// ✅ BON : utiliser @MappedSuperclass
@MappedSuperclass

2026/01/30 04:48 21/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

public abstract class EntiteAvecTimestamps { }

Cas d'Usage Réels

E-commerce

// SINGLE_TABLE pour Produit (peu de différences)
@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "type_produit")
public abstract class Produit {
 @Id
 private Long id;
 private String nom;
 private Double prix;
}

@Entity
@DiscriminatorValue("PHYSIQUE")
public class ProduitPhysique extends Produit {
 private Double poids;
 private String dimensionsEmballage;
}

@Entity
@DiscriminatorValue("NUMERIQUE")
public class ProduitNumerique extends Produit {
 private String urlTelechargement;
 private Integer nombreTelechargements;
}

// JOINED pour Utilisateur (différences importantes)
@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Utilisateur {
 @Id
 private Long id;
 private String email;
 private String motDePasse;
}

@Entity
public class Client extends Utilisateur {
 private String adresseLivraison;
 @OneToMany(mappedBy = "client")
 private List<Commande> commandes;
}

@Entity

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

public class Vendeur extends Utilisateur {
 private String nomBoutique;
 @OneToMany(mappedBy = "vendeur")
 private List<Produit> produits;
}

@Entity
public class Administrateur extends Utilisateur {
 private Set<String> permissions;
}

// @MappedSuperclass pour l'audit
@MappedSuperclass
public abstract class EntiteAuditee {
 private LocalDateTime createdAt;
 private LocalDateTime updatedAt;
}

Système bancaire

// JOINED pour Compte (intégrité critique)
@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Compte {
 @Id
 private Long id;
 private String numero;
 private Double solde;
 @ManyToOne
 private Client proprietaire;
}

@Entity
public class CompteCourant extends Compte {
 private Double decouvertAutorise;
 private Double fraisTenus;
 private Boolean carteAssociee;
}

@Entity
public class CompteEpargne extends Compte {
 private Double tauxInteret;
 private LocalDate dateOuverture;
 private Integer nombreRetraitsAnnuels;
}

@Entity
public class CompteJeune extends Compte {
 private LocalDate dateNaissance;
 private String nomResponsable;
 private Double plafondOperations;
}

2026/01/30 04:48 23/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

// SINGLE_TABLE pour Transaction (performances)
@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "type_transaction")
public abstract class Transaction {
 @Id
 private Long id;
 private Double montant;
 private LocalDateTime date;
 @ManyToOne
 private Compte compte;
}

@Entity
@DiscriminatorValue("DEPOT")
public class Depot extends Transaction {
 private String origine;
}

@Entity
@DiscriminatorValue("RETRAIT")
public class Retrait extends Transaction {
 private String destination;
 private String autorisationCode;
}

@Entity
@DiscriminatorValue("VIREMENT")
public class Virement extends Transaction {
 @ManyToOne
 private Compte compteDestination;
 private String reference;
}

Plateforme éducative

// JOINED pour Personne (structure complexe)
@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class Personne {
 @Id
 private Long id;
 private String nom;
 private String prenom;
 private String email;
}

@Entity
public class Etudiant extends Personne {
 private String numeroEtudiant;
 private Integer promotion;
 @ManyToMany
 @JoinTable(

Last update: 2025/10/07 17:42 framework-web:spring:inheritance http://slamwiki2.kobject.net/framework-web/spring/inheritance

http://slamwiki2.kobject.net/ Printed on 2026/01/30 04:48

 name = "inscription",
 joinColumns = @JoinColumn(name = "etudiant_id"),
 inverseJoinColumns = @JoinColumn(name = "cours_id")
)
 private Set<Cours> cours = new HashSet<>();
}

@Entity
public class Professeur extends Personne {
 private String specialite;
 private String bureau;
 @OneToMany(mappedBy = "professeur")
 private Set<Cours> coursEnseignes = new HashSet<>();
}

@Entity
public class Administrateur extends Personne {
 private String departement;
 private Set<String> permissions;
}

// SINGLE_TABLE pour Contenu (types variés, requêtes fréquentes)
@Entity
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "type_contenu")
public abstract class Contenu {
 @Id
 private Long id;
 private String titre;
 @ManyToOne
 private Cours cours;
}

@Entity
@DiscriminatorValue("VIDEO")
public class Video extends Contenu {
 private String url;
 private Integer dureeSecondes;
}

@Entity
@DiscriminatorValue("PDF")
public class DocumentPdf extends Contenu {
 private String fichier;
 private Integer nombrePages;
}

@Entity
@DiscriminatorValue("QUIZ")
public class Quiz extends Contenu {
 private Integer dureeMinutes;
 @OneToMany(mappedBy = "quiz")
 private List<Question> questions;
}

2026/01/30 04:48 25/25 Héritage avec Spring Data JPA

SlamWiki 2.1 - http://slamwiki2.kobject.net/

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/framework-web/spring/inheritance

Last update: 2025/10/07 17:42

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/framework-web/spring/inheritance

	Héritage avec Spring Data JPA
	Introduction
	Les Stratégies d'Héritage JPA
	1. SINGLE_TABLE (Table unique)
	Principe
	Code
	Table résultante

	2. JOINED (Table par classe)
	Principe
	Code
	Tables résultantes

	3. TABLE_PER_CLASS (Table par classe concrète)
	Principe
	Code
	Tables résultantes

	@MappedSuperclass (Alternative à l'héritage)
	Principe
	Code
	Tables résultantes

	Repositories Spring Data JPA
	Repositories de base
	Requêtes polymorphiques

	Annotations importantes
	@Inheritance
	@DiscriminatorColumn (pour SINGLE_TABLE)
	@DiscriminatorValue
	@PrimaryKeyJoinColumn (pour JOINED)

	Exemples Pratiques Complets
	Exemple 1 : Système de paiement (SINGLE_TABLE)
	Exemple 2 : Système de documents (JOINED)
	Exemple 3 : Audit avec @MappedSuperclass

	Comparaison des Stratégies
	Bonnes Pratiques
	✅ À FAIRE
	❌ À ÉVITER

	Cas d'Usage Réels
	E-commerce
	Système bancaire
	Plateforme éducative

