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Validation avec Bean Validation (Validator)

1. Introduction

2. Configuration

2.1 Dépendance Maven

<dependency>
<groupIld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-validation</artifactId>
</dependency>

2.2 Configuration des messages (optionnel)

Fichier src/main/resources/ValidationMessages.properties:

# Messages personnalisés

jakarta.validation.constraints.NotNull.message=Le champ {field} est obligatoire
jakarta.validation.constraints.Email.message=L'email {validatedValue} n'est pas
valide

jakarta.validation.constraints.Size.message=La taille doit étre entre {min} et
{max}

# Messages custom

product.name.invalid=Le nom du produit doit contenir entre 3 et 100 caracteres
user.password.weak=Le mot de passe doit contenir au moins 8 caracteres

3. Annotations de validation courantes
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3.1 Contraintes de base

import jakarta.validation.constraints.*;

public class User {
@NotNull(message = "L'ID ne peut pas étre null")
private UUID id;
@NotBlank(message = "Le nom d'utilisateur est obligatoire")
@Size(min = 3, max = 50)
private String username;

@Email(message = "Email invalide")
@NotBlank

private String email;

@Min(18)

@Max(120)

private Integer age;
@Pattern(regexp = "~ (?=.*[A-Z])(?=.*%\\d).{8,}%$",

message = "Mot de passe trop faible")
private String password;
@DecimalMin(value = "0.0", inclusive = false)

@DecimalMax("999999.99")
private BigDecimal salary;

@Past(message = "La date de naissance doit étre dans le passé")
private LocalDate birthDate;

@Future

private LocalDateTime appointmentDate;

@AssertTrue(message = "Vous devez accepter les CGU")

private Boolean termsAccepted;

3.2 Annotations avancées

public class Product {
@NotNull
@valid // « Valide en cascade l'objet imbriqué
private Category category;
@Size(min = 1, max = 10)
@valid // < Valide chaque élément de la liste
private List<@NotNull ProductImage> images;
@URL (protocol = "https")
private String officialWebsite;
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@CreditCardNumber

private String cardNumber;
@Positive

private Integer stock;
@PositiveOrZero

private BigDecimal discount;

4. Validation dans les différentes couches

4.1 Controller (REST API)

@RestController
@RequestMapping("/api/users")
public class UserController {
@PostMapping
public ResponseEntity<User> createUser(
@Valid @RequestBody User user, // < Validation automatique

BindingResult result) { // < Contient les erreurs
if (result.hasErrors()) {

// Gestion manuelle des erreurs

Map<String, String> errors = new HashMap<>();

result.getFieldErrors().forEach(error ->
errors.put(error.getField(), error.getDefaultMessage())

);

return ResponseEntity.badRequest().body(errors);

}

return ResponseEntity.ok(userService.save(user));
}
// Version avec gestion automatique des erreurs
@PostMapping("/auto")
public ResponseEntity<User> createlUserAuto(

@Valid @RequestBody User user) { // « Leve
MethodArgumentNotValidException si erreur
return ResponseEntity.ok(userService.save(user));

}

4.2 Service Layer

@Service
@Validated // « Active la validation sur les méthodes
public class ProductService {
private final Validator validator; // Injection du validateur
public ProductService(Validator validator) {
this.validator = validator;
}
// Validation automatique des parameétres
public Product createProduct(@Valid Product product) {
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// Spring valide automatiquement avec @Validated sur la classe
return productRepository.save(product);
}
// Validation manuelle
public void validateProduct(Product product) {
Set<ConstraintViolation<Product>> violations = validator.validate(product);
if (!violations.isEmpty()) {
String errors = violations.stream()

.map(v -> v.getPropertyPath() + ": " + v.getMessage())
.collect(Collectors.joining (", "));
throw new ValidationException("Erreurs de validation: " + errors);

}
}
// Validation de méthode
public Product findByName(@NotBlank @Size(min = 3) String name) {
return productRepository.findByName(name)
.orElseThrow(() -> new NotFoundException("Product not found"));

4.3 Entity (JPA)

@Entity
public class Order {
@Id
@GeneratedValue
private UUID id;
@NotNull
@ManyToOne(fetch = FetchType.LAZY)
private User user;
@NotEmpty(message = "Une commande doit contenir au moins un article")
@valid // Valide chaque OrderItem
@OneToMany (mappedBy = "order", cascade = CascadeType.ALL, orphanRemoval = true)
private List<OrderItem> items = new ArraylList<>();
@DecimalMin("0.01")
@Column(nullable = false)
private BigDecimal totalAmount;
// Validation appelée avant persist/update
@PrePersist
@PreUpdate
private void validate() {
calculateTotal();
if (totalAmount.compareTo(BigDecimal.ZERO) <= 0) {
throw new ValidationException("Le montant total doit étre positif");
}
}

private void calculateTotal() {
totalAmount = items.stream()
.map(0OrderItem::getSubtotal)
.reduce(BigDecimal.ZERO, BigDecimal::add);
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5. Validation personnalisée

5.1 Créer une annotation custom

@Target ({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)

@Constraint(validatedBy = StrongPasswordValidator.class)
@Documented

public @interface StrongPassword {

String message() default "Le mot de passe doit contenir au moins 8 caractéres,
+

"une majuscule, un chiffre et un caractéere spécial";
Class<?>[] groups() default {};

Class<? extends Payload>[] payload() default {};

5.2 Implémenter le validateur

public class StrongPasswordValidator implements ConstraintValidator<StrongPassword,
String> {
private static final String PASSWORD PATTERN =
"NM?=.*%[a-2z]) (?=.*%[A-Z]) (?=.*"\\d) (?=.*[@$!%*?&] ) [A-Za-z\\d@$!%*?&] {8, }$";
@Override
public boolean isValid(String password, ConstraintValidatorContext context) {
if (password == null) {
return false;

}
return password.matches(PASSWORD PATTERN);
}
}
5.3 Utilisation

public class UserRegistrationRequest {
@NotBlank
@Email
private String email;
@StrongPassword // < Notre annotation custom
private String password;

6. Validation conditionnelle avec Groups
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public interface OnCreate {}
public interface OnUpdate {}

public class Product {
@Null(groups = OnCreate.class) // Null lors de la création

@NotNull(groups = OnUpdate.class) // Obligatoire lors de la MAJ]
private UUID id;

@NotBlank(groups = {OnCreate.class, OnUpdate.class})
private String name;
@NotNull(groups = OnCreate.class)

@ecimalMin(value = "0.01", groups = {OnCreate.class, OnUpdate.class})
private BigDecimal price;

Utilisation dans le controller :

@PostMapping

public Product create(@Validated(OnCreate.class) @RequestBody Product product) {
return productService.save(product);
}

@PutMapping("/{id}")
public Product update(
@PathVariable UUID id,

@Validated(OnUpdate.class) @RequestBody Product product) {
product.setId(id);

return productService.update(product);

7. Gestion globale des erreurs

@RestControllerAdvice
public class ValidationExceptionHandler {
@ExceptionHandler (MethodArgumentNotValidException.class)
@ResponseStatus (HttpStatus.BAD REQUEST)
public Map<String, Object>
handleValidationErrors (MethodArgumentNotValidException ex) {
Map<String, String> errors = new HashMap<>();
ex.getBindingResult().getFieldErrors().forEach(error ->
errors.put(error.getField(), error.getDefaultMessage())
);
return Map.of (
"timestamp", LocalDateTime.now(),
"status", 400,
"errors", errors
)
}
@ExceptionHandler(ConstraintViolationException.class)
@ResponseStatus (HttpStatus.BAD REQUEST)
public Map<String, Object>
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handleConstraintViolation(ConstraintViolationException ex) {
Map<String, String> errors = new HashMap<>();
ex.getConstraintViolations().forEach(violation -> {
String propertyPath = violation.getPropertyPath().toString();
String message = violation.getMessage();
errors.put(propertyPath, message);
1)
return Map.of(
"timestamp", LocalDateTime.now(),
"status", 400,
"errors", errors

) g

8. Tests de validation

8.1 Test unitaire

@SpringBootTest
class UserValidationTest {

@Autowired

private Validator validator;

@Test

void shouldFailWhenEmailInvalid() {
// Given
User user = new User();
user.setUsername("john");
user.setEmail("invalid-email");
// When
Set<ConstraintViolation<User>> violations = validator.validate(user);
// Then
assertThat(violations).hasSize(1);
assertThat(violations)

.extracting(v -> v.getPropertyPath().toString())
.containsExactly("email");

}

@Test

void shouldValidateSuccessfully() {
// Given
User user = new User();
user.setUsername("john");
user.setEmail("john@example.com");
user.setAge(25);
// When
Set<ConstraintViolation<User>> violations = validator.validate(user);
// Then
assertThat(violations).isEmpty();
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8.2 Test d'intégration Controller

@SpringBootTest
@AutoConfigureMockMvc
class UserControllerValidationTest {
@Autowired
private MockMvc mockMvc;
@Autowired
private ObjectMapper objectMapper;
@Test
void shouldReturn400WhenUserInvalid() throws Exception {
// Given
User invalidUser = new User();
invalidUser.setUsername("ab"); // Trop court
invalidUser.setEmail("invalid");
// When/Then
mockMvc.perform(post("/api/users")
.contentType(MediaType.APPLICATION JSON)
.content(objectMapper.writeValueAsString(invalidUser)))
.andExpect(status().isBadRequest())
.andExpect(jsonPath("$.errors.username").exists())
.andExpect(jsonPath("$.errors.email") .exists());

9. Bonnes pratiques

10. Aide-mémoire

Annotation Usage Exemple

@NotNull Interdit null @NotNull UUID id
@NotBlank String non null/vide/espaces|@NotBlank String name
@Email Format email valide @Email String email
@Size Taille min/max @Size(min=3, max=50)
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Annotation Usage Exemple

@Min / @Max Valeur numériqgue min/max |@Min(0) Integer stock

@Pattern Regex @Pattern(regexp="[A-Z]{2}")

@Past /@Future

Date passée/future

@Past LocalDate birth

@valid

Validation en cascade

@Valid Address address

@Validated

Active validation méthodes

@Validated sur classe

Ressources

¢ Spring Validation Documentation
¢ Bean Validation Specification
¢ Baeldung - Java Bean Validation
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