2026/02/02 06:57 1/9 Validation avec Bean Validation (Validator)

Validation avec Bean Validation (Validator)

1. Introduction

2. Configuration

2.1 Dépendance Maven

<dependency>
<groupIld>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-validation</artifactId>
</dependency>

2.2 Configuration des messages (optionnel)

Fichier src/main/resources/ValidationMessages.properties:

Messages personnalisés

jakarta.validation.constraints.NotNull.message=Le champ {field} est obligatoire
jakarta.validation.constraints.Email.message=L'email {validatedValue} n'est pas
valide

jakarta.validation.constraints.Size.message=La taille doit étre entre {min} et
{max}

Messages custom

product.name.invalid=Le nom du produit doit contenir entre 3 et 100 caracteres
user.password.weak=Le mot de passe doit contenir au moins 8 caracteres

3. Annotations de validation courantes

SlamWiki 2.1 - http://slamwiki2.kobject.net/

'(')?fz;pdate: 2025/10/08 £ 1 ework-web:spring:validation http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

3.1 Contraintes de base

import jakarta.validation.constraints.*;

public class User {
@NotNull(message = "L'ID ne peut pas étre null")
private UUID id;
@NotBlank(message = "Le nom d'utilisateur est obligatoire")
@Size(min = 3, max = 50)
private String username;

@Email(message = "Email invalide")
@NotBlank

private String email;

@Min(18)

@Max(120)

private Integer age;
@Pattern(regexp = "~ (?=.*[A-Z])(?=.*%\\d).{8,}%$",

message = "Mot de passe trop faible")
private String password;
@DecimalMin(value = "0.0", inclusive = false)

@DecimalMax("999999.99")
private BigDecimal salary;

@Past(message = "La date de naissance doit étre dans le passé")
private LocalDate birthDate;

@Future

private LocalDateTime appointmentDate;

@AssertTrue(message = "Vous devez accepter les CGU")

private Boolean termsAccepted;

3.2 Annotations avancées

public class Product {
@NotNull
@valid // « Valide en cascade l'objet imbriqué
private Category category;
@Size(min = 1, max = 10)
@valid // < Valide chaque élément de la liste
private List<@NotNull ProductImage> images;
@URL (protocol = "https")
private String officialWebsite;

http://slamwiki2.kobject.net/ Printed on 2026/02/02 06:57

2026/02/02 06:57 3/9 Validation avec Bean Validation (Validator)

@CreditCardNumber

private String cardNumber;
@Positive

private Integer stock;
@PositiveOrZero

private BigDecimal discount;

4. Validation dans les différentes couches

4.1 Controller (REST API)

@RestController
@RequestMapping("/api/users")
public class UserController {
@PostMapping
public ResponseEntity<User> createUser(
@Valid @RequestBody User user, // < Validation automatique

BindingResult result) { // < Contient les erreurs
if (result.hasErrors()) {

// Gestion manuelle des erreurs

Map<String, String> errors = new HashMap<>();

result.getFieldErrors().forEach(error ->
errors.put(error.getField(), error.getDefaultMessage())

);

return ResponseEntity.badRequest().body(errors);

}

return ResponseEntity.ok(userService.save(user));
}
// Version avec gestion automatique des erreurs
@PostMapping("/auto")
public ResponseEntity<User> createlUserAuto(

@Valid @RequestBody User user) { // « Leve
MethodArgumentNotValidException si erreur
return ResponseEntity.ok(userService.save(user));

}

4.2 Service Layer

@Service
@Validated // « Active la validation sur les méthodes
public class ProductService {
private final Validator validator; // Injection du validateur
public ProductService(Validator validator) {
this.validator = validator;
}
// Validation automatique des parameétres
public Product createProduct(@Valid Product product) {

SlamWiki 2.1 - http://slamwiki2.kobject.net/

gg?i;pdate: 2025/10/08 £ 1 ework-web:spring:validation http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

// Spring valide automatiquement avec @Validated sur la classe
return productRepository.save(product);
}
// Validation manuelle
public void validateProduct(Product product) {
Set<ConstraintViolation<Product>> violations = validator.validate(product);
if (!violations.isEmpty()) {
String errors = violations.stream()

.map(v -> v.getPropertyPath() + ": " + v.getMessage())
.collect(Collectors.joining (", "));
throw new ValidationException("Erreurs de validation: " + errors);

}
}
// Validation de méthode
public Product findByName(@NotBlank @Size(min = 3) String name) {
return productRepository.findByName(name)
.orElseThrow(() -> new NotFoundException("Product not found"));

4.3 Entity (JPA)

@Entity
public class Order {
@Id
@GeneratedValue
private UUID id;
@NotNull
@ManyToOne(fetch = FetchType.LAZY)
private User user;
@NotEmpty(message = "Une commande doit contenir au moins un article")
@valid // Valide chaque OrderItem
@OneToMany (mappedBy = "order", cascade = CascadeType.ALL, orphanRemoval = true)
private List<OrderItem> items = new ArraylList<>();
@DecimalMin("0.01")
@Column(nullable = false)
private BigDecimal totalAmount;
// Validation appelée avant persist/update
@PrePersist
@PreUpdate
private void validate() {
calculateTotal();
if (totalAmount.compareTo(BigDecimal.ZERO) <= 0) {
throw new ValidationException("Le montant total doit étre positif");
}
}

private void calculateTotal() {
totalAmount = items.stream()
.map(0OrderItem::getSubtotal)
.reduce(BigDecimal.ZERO, BigDecimal::add);

http://slamwiki2.kobject.net/ Printed on 2026/02/02 06:57

2026/02/02 06:57 5/9 Validation avec Bean Validation (Validator)

5. Validation personnalisée

5.1 Créer une annotation custom

@Target ({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)

@Constraint(validatedBy = StrongPasswordValidator.class)
@Documented

public @interface StrongPassword {

String message() default "Le mot de passe doit contenir au moins 8 caractéres,
+

"une majuscule, un chiffre et un caractéere spécial";
Class<?>[] groups() default {};

Class<? extends Payload>[] payload() default {};

5.2 Implémenter le validateur

public class StrongPasswordValidator implements ConstraintValidator<StrongPassword,
String> {
private static final String PASSWORD PATTERN =
"NM?=.*%[a-2z]) (?=.*%[A-Z]) (?=.*"\\d) (?=.*[@$!%*?&]) [A-Za-z\\d@$!%*?&] {8, }$";
@Override
public boolean isValid(String password, ConstraintValidatorContext context) {
if (password == null) {
return false;

}
return password.matches(PASSWORD PATTERN);
}
}
5.3 Utilisation

public class UserRegistrationRequest {
@NotBlank
@Email
private String email;
@StrongPassword // < Notre annotation custom
private String password;

6. Validation conditionnelle avec Groups

SlamWiki 2.1 - http://slamwiki2.kobject.net/

gg?i;pdate: 2025/10/08 £ 1 ework-web:spring:validation http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

public interface OnCreate {}
public interface OnUpdate {}

public class Product {
@Null(groups = OnCreate.class) // Null lors de la création

@NotNull(groups = OnUpdate.class) // Obligatoire lors de la MAJ]
private UUID id;

@NotBlank(groups = {OnCreate.class, OnUpdate.class})
private String name;
@NotNull(groups = OnCreate.class)

@ecimalMin(value = "0.01", groups = {OnCreate.class, OnUpdate.class})
private BigDecimal price;

Utilisation dans le controller :

@PostMapping

public Product create(@Validated(OnCreate.class) @RequestBody Product product) {
return productService.save(product);
}

@PutMapping("/{id}")
public Product update(
@PathVariable UUID id,

@Validated(OnUpdate.class) @RequestBody Product product) {
product.setId(id);

return productService.update(product);

7. Gestion globale des erreurs

@RestControllerAdvice
public class ValidationExceptionHandler {
@ExceptionHandler (MethodArgumentNotValidException.class)
@ResponseStatus (HttpStatus.BAD REQUEST)
public Map<String, Object>
handleValidationErrors (MethodArgumentNotValidException ex) {
Map<String, String> errors = new HashMap<>();
ex.getBindingResult().getFieldErrors().forEach(error ->
errors.put(error.getField(), error.getDefaultMessage())
);
return Map.of (
"timestamp", LocalDateTime.now(),
"status", 400,
"errors", errors
)
}
@ExceptionHandler(ConstraintViolationException.class)
@ResponseStatus (HttpStatus.BAD REQUEST)
public Map<String, Object>

http://slamwiki2.kobject.net/ Printed on 2026/02/02 06:57

2026/02/02 06:57 7/9 Validation avec Bean Validation (Validator)

handleConstraintViolation(ConstraintViolationException ex) {
Map<String, String> errors = new HashMap<>();
ex.getConstraintViolations().forEach(violation -> {
String propertyPath = violation.getPropertyPath().toString();
String message = violation.getMessage();
errors.put(propertyPath, message);
1)
return Map.of(
"timestamp", LocalDateTime.now(),
"status", 400,
"errors", errors

) g

8. Tests de validation

8.1 Test unitaire

@SpringBootTest
class UserValidationTest {

@Autowired

private Validator validator;

@Test

void shouldFailWhenEmailInvalid() {
// Given
User user = new User();
user.setUsername("john");
user.setEmail("invalid-email");
// When
Set<ConstraintViolation<User>> violations = validator.validate(user);
// Then
assertThat(violations).hasSize(1);
assertThat(violations)

.extracting(v -> v.getPropertyPath().toString())
.containsExactly("email");

}

@Test

void shouldValidateSuccessfully() {
// Given
User user = new User();
user.setUsername("john");
user.setEmail("john@example.com");
user.setAge(25);
// When
Set<ConstraintViolation<User>> violations = validator.validate(user);
// Then
assertThat(violations).isEmpty();

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2025/10/08

00:42 framework-web:spring:validation http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

8.2 Test d'intégration Controller

@SpringBootTest
@AutoConfigureMockMvc
class UserControllerValidationTest {
@Autowired
private MockMvc mockMvc;
@Autowired
private ObjectMapper objectMapper;
@Test
void shouldReturn400WhenUserInvalid() throws Exception {
// Given
User invalidUser = new User();
invalidUser.setUsername("ab"); // Trop court
invalidUser.setEmail("invalid");
// When/Then
mockMvc.perform(post("/api/users")
.contentType(MediaType.APPLICATION JSON)
.content(objectMapper.writeValueAsString(invalidUser)))
.andExpect(status().isBadRequest())
.andExpect(jsonPath("$.errors.username").exists())
.andExpect(jsonPath("$.errors.email") .exists());

9. Bonnes pratiques

10. Aide-mémoire

Annotation Usage Exemple

@NotNull Interdit null @NotNull UUID id
@NotBlank String non null/vide/espaces|@NotBlank String name
@Email Format email valide @Email String email
@Size Taille min/max @Size(min=3, max=50)

http://slamwiki2.kobject.net/ Printed on 2026/02/02 06:57

2026/02/02 06:57 9/9 Validation avec Bean Validation (Validator)
Annotation Usage Exemple

@Min / @Max Valeur numériqgue min/max |@Min(0) Integer stock

@Pattern Regex @Pattern(regexp="[A-Z]{2}")

@Past /@Future

Date passée/future

@Past LocalDate birth

@valid

Validation en cascade

@Valid Address address

@Validated

Active validation méthodes

@Validated sur classe

Ressources

¢ Spring Validation Documentation
¢ Bean Validation Specification
¢ Baeldung - Java Bean Validation

From:

http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:

http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

Last update: 2025/10/08 00:42

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://docs.spring.io/spring-framework/reference/core/validation/beanvalidation.html
https://beanvalidation.org/
https://www.baeldung.com/javax-validation
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

	[Validation avec Bean Validation (Validator)]
	Validation avec Bean Validation (Validator)
	1. Introduction
	2. Configuration
	2.1 Dépendance Maven
	2.2 Configuration des messages (optionnel)

	3. Annotations de validation courantes
	3.1 Contraintes de base
	3.2 Annotations avancées

	4. Validation dans les différentes couches
	4.1 Controller (REST API)
	4.2 Service Layer
	4.3 Entity (JPA)

	5. Validation personnalisée
	5.1 Créer une annotation custom
	5.2 Implémenter le validateur
	5.3 Utilisation

	6. Validation conditionnelle avec Groups
	7. Gestion globale des erreurs
	8. Tests de validation
	8.1 Test unitaire
	8.2 Test d'intégration Controller

	9. Bonnes pratiques
	10. Aide-mémoire

	Ressources

