
2026/02/02 06:57 1/9 Validation avec Bean Validation (Validator)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Validation avec Bean Validation (Validator)

1. Introduction

Bean Validation (JSR 380) permet de valider les données avec des annotations.

Avantages :

✅ Déclaratif (annotations sur les champs)
✅ Réutilisable (validation côté service, controller, persistence)
✅ Messages d'erreur personnalisables
✅ Validation groupée et conditionnelle

2. Configuration

2.1 Dépendance Maven

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-validation</artifactId>
</dependency>

Spring Boot inclut automatiquement Hibernate Validator (implémentation de référence).

2.2 Configuration des messages (optionnel)

Fichier src/main/resources/ValidationMessages.properties :

Messages personnalisés
jakarta.validation.constraints.NotNull.message=Le champ {field} est obligatoire
jakarta.validation.constraints.Email.message=L'email {validatedValue} n'est pas
valide
jakarta.validation.constraints.Size.message=La taille doit être entre {min} et
{max}

Messages custom
product.name.invalid=Le nom du produit doit contenir entre 3 et 100 caractères
user.password.weak=Le mot de passe doit contenir au moins 8 caractères

3. Annotations de validation courantes

Last update: 2025/10/08
00:42 framework-web:spring:validation http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

http://slamwiki2.kobject.net/ Printed on 2026/02/02 06:57

3.1 Contraintes de base

import jakarta.validation.constraints.*;

public class User {
 @NotNull(message = "L'ID ne peut pas être null")
 private UUID id;
 @NotBlank(message = "Le nom d'utilisateur est obligatoire")
 @Size(min = 3, max = 50)
 private String username;
 @Email(message = "Email invalide")
 @NotBlank
 private String email;
 @Min(18)
 @Max(120)
 private Integer age;
 @Pattern(regexp = "^(?=.*[A-Z])(?=.*\\d).{8,}$",
 message = "Mot de passe trop faible")
 private String password;
 @DecimalMin(value = "0.0", inclusive = false)
 @DecimalMax("999999.99")
 private BigDecimal salary;
 @Past(message = "La date de naissance doit être dans le passé")
 private LocalDate birthDate;
 @Future
 private LocalDateTime appointmentDate;
 @AssertTrue(message = "Vous devez accepter les CGU")
 private Boolean termsAccepted;
}

Différence importante :

@NotNull : Interdit null (accepte chaîne vide)
@NotEmpty : Interdit null et collection/chaîne vide
@NotBlank : Interdit null, vide et espaces uniquement (String uniquement)

3.2 Annotations avancées

public class Product {
 @NotNull
 @Valid // ← Valide en cascade l'objet imbriqué
 private Category category;
 @Size(min = 1, max = 10)
 @Valid // ← Valide chaque élément de la liste
 private List<@NotNull ProductImage> images;
 @URL(protocol = "https")
 private String officialWebsite;

2026/02/02 06:57 3/9 Validation avec Bean Validation (Validator)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 @CreditCardNumber
 private String cardNumber;
 @Positive
 private Integer stock;
 @PositiveOrZero
 private BigDecimal discount;
}

4. Validation dans les différentes couches

4.1 Controller (REST API)

@RestController
@RequestMapping("/api/users")
public class UserController {
 @PostMapping
 public ResponseEntity<User> createUser(
 @Valid @RequestBody User user, // ← Validation automatique
 BindingResult result) { // ← Contient les erreurs
 if (result.hasErrors()) {
 // Gestion manuelle des erreurs
 Map<String, String> errors = new HashMap<>();
 result.getFieldErrors().forEach(error ->
 errors.put(error.getField(), error.getDefaultMessage())
);
 return ResponseEntity.badRequest().body(errors);
 }
 return ResponseEntity.ok(userService.save(user));
 }
 // Version avec gestion automatique des erreurs
 @PostMapping("/auto")
 public ResponseEntity<User> createUserAuto(
 @Valid @RequestBody User user) { // ← Lève
MethodArgumentNotValidException si erreur
 return ResponseEntity.ok(userService.save(user));
 }
}

4.2 Service Layer

@Service
@Validated // ← Active la validation sur les méthodes
public class ProductService {
 private final Validator validator; // Injection du validateur
 public ProductService(Validator validator) {
 this.validator = validator;
 }
 // Validation automatique des paramètres
 public Product createProduct(@Valid Product product) {

Last update: 2025/10/08
00:42 framework-web:spring:validation http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

http://slamwiki2.kobject.net/ Printed on 2026/02/02 06:57

 // Spring valide automatiquement avec @Validated sur la classe
 return productRepository.save(product);
 }
 // Validation manuelle
 public void validateProduct(Product product) {
 Set<ConstraintViolation<Product>> violations = validator.validate(product);
 if (!violations.isEmpty()) {
 String errors = violations.stream()
 .map(v -> v.getPropertyPath() + ": " + v.getMessage())
 .collect(Collectors.joining(", "));
 throw new ValidationException("Erreurs de validation: " + errors);
 }
 }
 // Validation de méthode
 public Product findByName(@NotBlank @Size(min = 3) String name) {
 return productRepository.findByName(name)
 .orElseThrow(() -> new NotFoundException("Product not found"));
 }
}

4.3 Entity (JPA)

@Entity
public class Order {
 @Id
 @GeneratedValue
 private UUID id;
 @NotNull
 @ManyToOne(fetch = FetchType.LAZY)
 private User user;
 @NotEmpty(message = "Une commande doit contenir au moins un article")
 @Valid // Valide chaque OrderItem
 @OneToMany(mappedBy = "order", cascade = CascadeType.ALL, orphanRemoval = true)
 private List<OrderItem> items = new ArrayList<>();
 @DecimalMin("0.01")
 @Column(nullable = false)
 private BigDecimal totalAmount;
 // Validation appelée avant persist/update
 @PrePersist
 @PreUpdate
 private void validate() {
 calculateTotal();
 if (totalAmount.compareTo(BigDecimal.ZERO) <= 0) {
 throw new ValidationException("Le montant total doit être positif");
 }
 }
 private void calculateTotal() {
 totalAmount = items.stream()
 .map(OrderItem::getSubtotal)
 .reduce(BigDecimal.ZERO, BigDecimal::add);
 }
}

2026/02/02 06:57 5/9 Validation avec Bean Validation (Validator)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

5. Validation personnalisée

5.1 Créer une annotation custom

@Target({ElementType.FIELD, ElementType.PARAMETER})
@Retention(RetentionPolicy.RUNTIME)
@Constraint(validatedBy = StrongPasswordValidator.class)
@Documented
public @interface StrongPassword {
 String message() default "Le mot de passe doit contenir au moins 8 caractères,
" +
 "une majuscule, un chiffre et un caractère spécial";
 Class<?>[] groups() default {};
 Class<? extends Payload>[] payload() default {};
}

5.2 Implémenter le validateur

public class StrongPasswordValidator implements ConstraintValidator<StrongPassword,
String> {
 private static final String PASSWORD_PATTERN =
 "^(?=.*[a-z])(?=.*[A-Z])(?=.*\\d)(?=.*[@$!%*?&])[A-Za-z\\d@$!%*?&]{8,}$";
 @Override
 public boolean isValid(String password, ConstraintValidatorContext context) {
 if (password == null) {
 return false;
 }
 return password.matches(PASSWORD_PATTERN);
 }
}

5.3 Utilisation

public class UserRegistrationRequest {
 @NotBlank
 @Email
 private String email;
 @StrongPassword // ← Notre annotation custom
 private String password;
}

6. Validation conditionnelle avec Groups

Last update: 2025/10/08
00:42 framework-web:spring:validation http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

http://slamwiki2.kobject.net/ Printed on 2026/02/02 06:57

public interface OnCreate {}
public interface OnUpdate {}

public class Product {
 @Null(groups = OnCreate.class) // Null lors de la création
 @NotNull(groups = OnUpdate.class) // Obligatoire lors de la MAJ
 private UUID id;
 @NotBlank(groups = {OnCreate.class, OnUpdate.class})
 private String name;
 @NotNull(groups = OnCreate.class)
 @DecimalMin(value = "0.01", groups = {OnCreate.class, OnUpdate.class})
 private BigDecimal price;
}

Utilisation dans le controller :

@PostMapping
public Product create(@Validated(OnCreate.class) @RequestBody Product product) {
 return productService.save(product);
}

@PutMapping("/{id}")
public Product update(
 @PathVariable UUID id,
 @Validated(OnUpdate.class) @RequestBody Product product) {
 product.setId(id);
 return productService.update(product);
}

7. Gestion globale des erreurs

@RestControllerAdvice
public class ValidationExceptionHandler {
 @ExceptionHandler(MethodArgumentNotValidException.class)
 @ResponseStatus(HttpStatus.BAD_REQUEST)
 public Map<String, Object>
handleValidationErrors(MethodArgumentNotValidException ex) {
 Map<String, String> errors = new HashMap<>();
 ex.getBindingResult().getFieldErrors().forEach(error ->
 errors.put(error.getField(), error.getDefaultMessage())
);
 return Map.of(
 "timestamp", LocalDateTime.now(),
 "status", 400,
 "errors", errors
);
 }
 @ExceptionHandler(ConstraintViolationException.class)
 @ResponseStatus(HttpStatus.BAD_REQUEST)
 public Map<String, Object>

2026/02/02 06:57 7/9 Validation avec Bean Validation (Validator)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

handleConstraintViolation(ConstraintViolationException ex) {
 Map<String, String> errors = new HashMap<>();
 ex.getConstraintViolations().forEach(violation -> {
 String propertyPath = violation.getPropertyPath().toString();
 String message = violation.getMessage();
 errors.put(propertyPath, message);
 });
 return Map.of(
 "timestamp", LocalDateTime.now(),
 "status", 400,
 "errors", errors
);
 }
}

8. Tests de validation

8.1 Test unitaire

@SpringBootTest
class UserValidationTest {
 @Autowired
 private Validator validator;
 @Test
 void shouldFailWhenEmailInvalid() {
 // Given
 User user = new User();
 user.setUsername("john");
 user.setEmail("invalid-email");
 // When
 Set<ConstraintViolation<User>> violations = validator.validate(user);
 // Then
 assertThat(violations).hasSize(1);
 assertThat(violations)
 .extracting(v -> v.getPropertyPath().toString())
 .containsExactly("email");
 }
 @Test
 void shouldValidateSuccessfully() {
 // Given
 User user = new User();
 user.setUsername("john");
 user.setEmail("john@example.com");
 user.setAge(25);
 // When
 Set<ConstraintViolation<User>> violations = validator.validate(user);
 // Then
 assertThat(violations).isEmpty();
 }
}

Last update: 2025/10/08
00:42 framework-web:spring:validation http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

http://slamwiki2.kobject.net/ Printed on 2026/02/02 06:57

8.2 Test d'intégration Controller

@SpringBootTest
@AutoConfigureMockMvc
class UserControllerValidationTest {
 @Autowired
 private MockMvc mockMvc;
 @Autowired
 private ObjectMapper objectMapper;
 @Test
 void shouldReturn400WhenUserInvalid() throws Exception {
 // Given
 User invalidUser = new User();
 invalidUser.setUsername("ab"); // Trop court
 invalidUser.setEmail("invalid");
 // When/Then
 mockMvc.perform(post("/api/users")
 .contentType(MediaType.APPLICATION_JSON)
 .content(objectMapper.writeValueAsString(invalidUser)))
 .andExpect(status().isBadRequest())
 .andExpect(jsonPath("$.errors.username").exists())
 .andExpect(jsonPath("$.errors.email").exists());
 }
}

9. Bonnes pratiques

✅ DO

Valider au plus tôt (couche controller/API)
Utiliser @Valid sur les objets imbriqués
Créer des annotations custom pour logique métier complexe
Utiliser les groups pour contextes différents (create/update)
Centraliser la gestion d'erreurs avec @RestControllerAdvice

❌ DON'T

Ne pas dupliquer la validation dans plusieurs couches
Éviter la validation dans les getters/setters
Ne pas ignorer les ConstraintViolation retournées
Ne pas mélanger validation technique et règles métier complexes

10. Aide-mémoire

Annotation Usage Exemple
@NotNull Interdit null @NotNull UUID id
@NotBlank String non null/vide/espaces @NotBlank String name
@Email Format email valide @Email String email
@Size Taille min/max @Size(min=3, max=50)

2026/02/02 06:57 9/9 Validation avec Bean Validation (Validator)

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Annotation Usage Exemple
@Min / @Max Valeur numérique min/max @Min(0) Integer stock
@Pattern Regex @Pattern(regexp=“[A-Z]{2}”)
@Past / @Future Date passée/future @Past LocalDate birth
@Valid Validation en cascade @Valid Address address
@Validated Active validation méthodes @Validated sur classe

Ressources

Spring Validation Documentation
Bean Validation Specification
Baeldung - Java Bean Validation

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

Last update: 2025/10/08 00:42

https://docs.spring.io/spring-framework/reference/core/validation/beanvalidation.html
https://beanvalidation.org/
https://www.baeldung.com/javax-validation
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/framework-web/spring/validation?rev=1759876975

	[Validation avec Bean Validation (Validator)]
	Validation avec Bean Validation (Validator)
	1. Introduction
	2. Configuration
	2.1 Dépendance Maven
	2.2 Configuration des messages (optionnel)

	3. Annotations de validation courantes
	3.1 Contraintes de base
	3.2 Annotations avancées

	4. Validation dans les différentes couches
	4.1 Controller (REST API)
	4.2 Service Layer
	4.3 Entity (JPA)

	5. Validation personnalisée
	5.1 Créer une annotation custom
	5.2 Implémenter le validateur
	5.3 Utilisation

	6. Validation conditionnelle avec Groups
	7. Gestion globale des erreurs
	8. Tests de validation
	8.1 Test unitaire
	8.2 Test d'intégration Controller

	9. Bonnes pratiques
	10. Aide-mémoire

	Ressources

