
2026/02/20 19:43 1/11 TD n°3

SlamWiki 2.1 - http://slamwiki2.kobject.net/

TD n°3

Tous les exercices utilisent Semantic-UI pour la partie CSS.

Projet boards
Application gestion de projets SCRUM

Objectifs

Bases symfony + Doctrine1.
Requêtes Ajax, Composants2.

Contexte

Vous travaillez sur un outil permettant de gérer des projets.

Voici les principales caractéristiques du système d'information :

Chaque projet [project] possède un nom, un descriptif, une date de début et de fin, et un propriétaire
(owner, qui est un développeur)
L'équipe est constituée d'un ensemble de développeurs [developer].
Chaque User story [story] a un code et un descriptif, et appartient à un projet.
Il est possible de lui apposer des tags [tags], composés d'une couleur et d'un label.
Elle peut être affectée à un développeur[dev] (qui a juste une identité).
Elle peut contenir une liste de tâches [tasks], à réaliser ou réalisées.

https://semantic-ui.com

Last update: 2019/08/31 14:43 framework-web:symfony:td3 http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

http://slamwiki2.kobject.net/ Printed on 2026/02/20 19:43

Création du projet, intégration des composants

Exécuter le script de création de la base de données :

mysql -u root < path/to/boards.sql

Créer le projet boards

composer create-project symfony/skeleton boards

A partir du dossier de l'application, intégrer les principaux composants :

composer require annotations twig doctrine maker asset

Configurer la connexion à la base de données dans le fichier .env

Générer les classes métier :

http://slamwiki2.kobject.net/_detail/slam4/richclient/angularjs/boards.png?id=framework-web%3Asymfony%3Atd3

2026/02/20 19:43 3/11 TD n°3

SlamWiki 2.1 - http://slamwiki2.kobject.net/

php bin/console doctrine:mapping:convert --from-database annotation ./src/Entity

Ajouter et lancer le serveur de développement :

composer require server --dev
php bin/console server:run

Intégration Semantic

Intégrer phpMv-UI toolkit :

composer require phpmv/php-mv-ui 2.3.x-dev

Télécharger Semantic-UI, dézipper l'archive dans le dossier public/assets (à créer)
Télécharger Jquery

Modifier le template de base : templates/base.html.twig

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>{% block title %}Welcome!{% endblock %}</title>
 {% block stylesheets %}
 <link rel="stylesheet" type="text/css" href="{{
asset('assets/semantic.min.css') }}">
 {% endblock %}
 </head>
 <body>
 <div class="ui container">
 {% block body %}{% endblock %}
 </div>
 {% block javascripts %}
 <script src="{{ asset('assets/jquery-3.3.1.min.js') }}"></script>
 <script src="{{ asset('assets/semantic.min.js') }}"></script>
 {% endblock %}
 </body>
</html>

Classes métier

Modifier les classes métier :

Renommer les instances/collections associées ex: $idowner devient $owner dans la classe Project
Intégrer les classes au namespace App\Entity
Générer les accesseurs

Exemple pour la classe Project :

https://semantic-ui.com/download
https://jquery.com/download/

Last update: 2019/08/31 14:43 framework-web:symfony:td3 http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

http://slamwiki2.kobject.net/ Printed on 2026/02/20 19:43

namespace App\Entity;

use Doctrine\ORM\Mapping as ORM;
use Doctrine\Common\Collections\ArrayCollection;

/**
 * Project
 *
 * @ORM\Table(name="project",
uniqueConstraints={@ORM\UniqueConstraint(name="projectName", columns={"name"})},
indexes={@ORM\Index(name="idOwner", columns={"idOwner"})})
 * @ORM\Entity
 */
class Project
{
 /**
 * @var int
 *
 * @ORM\Column(name="id", type="integer", nullable=false)
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="IDENTITY")
 */
 private $id;

 /**
 * @var string
 *
 * @ORM\Column(name="name", type="string", length=100, nullable=false)
 */
 private $name;

 /**
 * @var string
 *
 * @ORM\Column(name="descriptif", type="text", length=65535, nullable=false)
 */
 private $descriptif;

 /**
 * @var \DateTime
 *
 * @ORM\Column(name="startDate", type="date", nullable=false)
 */
 private $startdate;

 /**
 * @var \DateTime
 *
 * @ORM\Column(name="dueDate", type="date", nullable=false)
 */
 private $duedate;

 /**
 * @var \Developer
 *
 * @ORM\ManyToOne(targetEntity="Developer")

2026/02/20 19:43 5/11 TD n°3

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 * @ORM\JoinColumns({
 * @ORM\JoinColumn(name="idOwner", referencedColumnName="id")
 * })
 */
 private $owner;

 /**
 * @ORM\OneToMany(targetEntity="App\Entity\Story", mappedBy="project")
 */
 private $stories;
 public function __construct(){
 $this->stories=new ArrayCollection();
 }
}

Créer le repository ProjectRepository :

namespace App\Repository;

use App\Entity\Project;
use Doctrine\Bundle\DoctrineBundle\Repository\ServiceEntityRepository;
use Symfony\Bridge\Doctrine\RegistryInterface;

class ProjectRepository extends ServiceEntityRepository
{
 public function __construct(RegistryInterface $registry)
 {
 parent::__construct($registry, Project::class);
 }
}

Tests phpMv-UI

Service

Créer la classe ProjectsGui dans le dossier src/Services/semantic

namespace App\Services\semantic;

use Ajax\php\symfony\JquerySemantic;

class ProjectsGui extends JquerySemantic{
}

Contrôleur

Créer le contrôleur Projects :

Last update: 2019/08/31 14:43 framework-web:symfony:td3 http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

http://slamwiki2.kobject.net/ Printed on 2026/02/20 19:43

php bin/console make:controller Projects

Test Ajax

Créer une méthode dans le service ProjectsGui permettant de générer un bouton :
Le click sur le bouton effectuera une requête ajax vers l'adresse /projects dont le résultat sera affiché dans une
zone HTML d'id response :

namespace App\Services\semantic;

use Ajax\php\symfony\JquerySemantic;

class ProjectsGui extends JquerySemantic{
 public function button(){
 $bt=$this->semantic()->htmlButton("btProjects","Projets","orange");
 $bt->getOnClick($this->getUrl("/projects"),"#response",["attr"=>""]);
 return $bt;
 }
}

Injecter le service ProjectsGui en le passant en paramètre de la méthode index :
La méthode index appelle la génération du bouton et affiche la vue Projets/index.html.twig

namespace App\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;
use App\Services\semantic\ProjectsGui;

class ProjectsController extends Controller{
 /**
 * @Route("/index", name="index")
 */
 public function index(ProjectsGui $gui){
 $gui->button();
 return $gui->renderView('Projects/index.html.twig');
 }

Créer le template Projects/index.html.twig :

{% extends "base.html.twig" %}
{% block body %}
 {{ q["btProjects"] | raw }}
 <div id="response" class="ui segment"></div>
{% endblock %}
{% block javascripts %}
 {{ parent() }}
 {{ script_foot | raw }}
{% endblock %}

2026/02/20 19:43 7/11 TD n°3

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Ajouter la route /projects pour afficher les projets :

...
 /**
 * @Route("/projects", name="projects")
 */
 public function all(ProjectRepository $projectRepo){
 $projects=$projectRepo->findAll();
 return $this->render('Projects/all.html.twig',["projects"=>$projects]);
 }

Le template Projects/all.html.twig affiche la liste des projets :

 <div class="ui inverted segment">
 <div class="ui inverted relaxed divided list">
 {% for project in projects %}
 <div class="item">
 <div class="content">
 <div class="header">{{ project.name }}</div>
 {{ project.descriptif }}
 </div>
 </div>
 {% endfor %}
 </div>
 </div>

Composant HtmlButtonGroups

Créer la méthode buttons dans la classe ProjectsGui :

...
 public function buttons(){
 $bts=$this->_semantic->htmlButtonGroups("bts",["Projects","Tags"]);
 $bts->addIcons(["folder","tags"]);
 $bts->setPropertyValues("data-url", ["projects","tags"]);
 $bts->getOnClick("","#response",["attr"=>"data-url"]);

http://slamwiki2.kobject.net/_detail/framework-web/symfony/td3/projects.png?id=framework-web%3Asymfony%3Atd3

Last update: 2019/08/31 14:43 framework-web:symfony:td3 http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

http://slamwiki2.kobject.net/ Printed on 2026/02/20 19:43

 }

Le click sur chaque bouton effectue une requête ajax vers l'url définie dans data-url dont le résultat est afficher
dans l'élément HTML d'id response

Modifier le template Projects/index.html.twig pour qu'il affiche les boutons :

{% extends "base.html.twig" %}
{% block body %}
 {{ q["bts"] | raw }}
 <div id="response" class="ui segment"></div>
{% endblock %}
{% block javascripts %}
 {{ parent() }}
 {{ script_foot | raw }}
{% endblock %}

Modifier l'action index pour qu'elle appelle la méthode buttons de gui :

class ProjectsController extends Controller{
 /**
 * @Route("/index", name="index")
 */
 public function index(ProjectsGui $gui){
 $gui->buttons();
 return $gui->renderView('Projects/index.html.twig');
 }
 ...

Composant DataTable

Créer la classe TagsGui dans src/Services :

namespace App\Services\semantic;

use Ajax\php\symfony\JquerySemantic;

class TagsGui extends JquerySemantic{
 public function dataTable($tags){
 $dt=$this->_semantic->dataTable("dtTags", "App\Entity\Tag", $tags);
 return $dt;
 }
}

Créer la classe Repository pour les Tags :

http://slamwiki2.kobject.net/_detail/framework-web/symfony/td3/buttons.png?id=framework-web%3Asymfony%3Atd3

2026/02/20 19:43 9/11 TD n°3

SlamWiki 2.1 - http://slamwiki2.kobject.net/

namespace App\Repository;

use Doctrine\Bundle\DoctrineBundle\Repository\ServiceEntityRepository;
use Symfony\Bridge\Doctrine\RegistryInterface;
use App\Entity\Tag;

class TagRepository extends ServiceEntityRepository
{
 public function __construct(RegistryInterface $registry)
 {
 parent::__construct($registry, Tag::class);
 }
}

Créer le controller Tags et la route tags :

namespace App\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;
use App\Repository\TagRepository;
use App\Services\semantic\TagsGui;

class TagsController extends Controller{

 /**
 * @Route("/tags", name="tags")
 */
 public function index(TagsGui $gui,TagRepository $tagRepo){
 $tags=$tagRepo->findAll();
 $dt=$gui->dataTable($tags);
 return new Response($dt);
 }
}

Amélioration de l'affichage des tags :

namespace App\Services\semantic;

use Ajax\php\symfony\JquerySemantic;
use Ajax\semantic\html\elements\HtmlLabel;

class TagsGui extends JquerySemantic{
 public function dataTable($tags){
 $dt=$this->_semantic->dataTable("dtTags", "App\Entity\Tag", $tags);
 $dt->setFields(["tag"]);
 $dt->setCaptions(["Tag"]);
 $dt->setValueFunction("tag", function($v,$tag){
 $lbl=new HtmlLabel("",$tag->getTitle());
 $lbl->setColor($tag->getColor());

Last update: 2019/08/31 14:43 framework-web:symfony:td3 http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

http://slamwiki2.kobject.net/ Printed on 2026/02/20 19:43

 return $lbl;
 });
 return $dt;
 }
}

Formulaire de modification

Ajouter une méthode *frm* dans TagsGui

 public function frm(Tag $tag){
 $frm=$this->_semantic->dataForm("frm-tag", $tag);
 return $frm;
 }

Créer la vue associée :

{{ q["frm-tag"] | raw }}
{{ script_foot | raw }}

Créer la route affichant le formulaire dans le contrôleur Tags :

...
 /**
 * @Route("tag/update/{id}", name="tag_update")
 */
 public function update(Tag $tag,TagsGui $tagsGui){
 $tagsGui->frm($tag);
 return $tagsGui->renderView('Tags/frm.html.twig');
 }

http://slamwiki2.kobject.net/_detail/framework-web/symfony/td3/tags-2.png?id=framework-web%3Asymfony%3Atd3

2026/02/20 19:43 11/11 TD n°3

SlamWiki 2.1 - http://slamwiki2.kobject.net/

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

Last update: 2019/08/31 14:43

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

	TD n°3
	Objectifs
	Contexte
	Création du projet, intégration des composants
	Intégration Semantic
	Classes métier
	Tests phpMv-UI
	Service
	Contrôleur
	Test Ajax
	Composant HtmlButtonGroups
	Composant DataTable
	Formulaire de modification

