2026/02/20 19:43 1/11 TD n°3

TD n°3

Tous les exercices utilisent Semantic-Ul pour la partie CSS.

Symfony

¢ Projet boards
¢ Application gestion de projets SCRUM

Objectifs

1. Bases symfony + Doctrine
2. Requétes Ajax, Composants

Contexte

Vous travaillez sur un outil permettant de gérer des projets.
Voici les principales caractéristiques du systéme d'information :

¢ Chaque projet [project] posséde un nom, un descriptif, une date de début et de fin, et un propriétaire
(owner, qui est un développeur)

L'équipe est constituée d'un ensemble de développeurs [developer].

Chaque User story [story] a un code et un descriptif, et appartient a un projet.

Il est possible de lui apposer des tags [tags], composés d'une couleur et d'un label.

Elle peut étre affectée a un développeur[dev] (qui a juste une identité).

Elle peut contenir une liste de taches [tasks], a réaliser ou réalisées.

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://semantic-ui.com

Last update: 2019/08/31 14:43 framework-web:symfony:td3 http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

Developer
{from org) 0.1 developer
&1 identity: String[0..1]

owner
— @ 0etStories(): Story["]
* |, projects | % getProjects(): Project["]
Project
(from org)

&, name: String[0..1]
&1, descriptif: String[0..1]
&2, startDate: java.util. Date[0..1]

: Sto
&, dueDate: java.util. Date[0..1] 0.1 stories > from gg;
i getStories(): Story[*] project stories » | & code: String[0..1]
#3 getOwner(): Developer{0..1] & descriptif: String[0..1]

#2 getDeveloper(): Developer]0..1]
ﬁ getStep(): Step[0..1]

s {ﬁ; getProject(): Project[0.1]
ﬁgetTags(): Tag["]

{ﬁ;getTas ks(): Task["]

Tag
(from org)

t
S title: String[D._1] ©

Step story ‘101
(from org) 0.1
Eititle: String[0..1]| step * | tasks
Task
(from org)

&= content: String[0..1]
#3 getStory(): Story[0..1]

Création du projet, intégration des composants

Exécuter le script de création de la base de données :

mysql -u root < path/to/boards.sql

Créer le projet boards

composer create-project symfony/skeleton boards

A partir du dossier de I'application, intégrer les principaux composants :

composer require annotations twig doctrine maker asset

Configurer la connexion a la base de données dans le fichier .env

Générer les classes métier :

http://slamwiki2.kobject.net/ Printed on 2026/02/20 19:43

http://slamwiki2.kobject.net/_detail/slam4/richclient/angularjs/boards.png?id=framework-web%3Asymfony%3Atd3

2026/02/20 19:43 3/11 TD n°3

php bin/console doctrine:mapping:convert --from-database annotation ./src/Entity
Ajouter et lancer le serveur de développement :

composer require server --dev
php bin/console server:run

Intégration Semantic
Intégrer phpMv-UlI toolkit :

composer require phpmv/php-mv-ui 2.3.x-dev

e Télécharger Semantic-Ul, dézipper I'archive dans le dossier public/assets (a créer)
e Télécharger Jquery

Modifier le template de base : templates/base.html.twig

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>{% block title %}Welcome!{% endblock %}</title>
{% block stylesheets %}
<link rel="stylesheet" type="text/css" href="{{
asset('assets/semantic.min.css') }}">
{% endblock %}
</head>
<body>
<div class="ui container">
{% block body %}{% endblock %}
</div>
{% block javascripts %
<script src="{{ asset('assets/jquery-3.3.1.min.js') }}"></script>
<script src="{{ asset('assets/semantic.min.js') }}"></script>
% endblock %}
</body>
</html>

}

Classes métier

Modifier les classes métier :

e Renommer les instances/collections associées ex: $idowner devient $owner dans la classe Project
e Intégrer les classes au namespace App\Entity
e Générer les accesseurs

Exemple pour la classe Project :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://semantic-ui.com/download
https://jquery.com/download/

Last update: 2019/08/31 14:43 framework-web:symfony:td3 http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

namespace App\Entity;

use Doctrine\ORM\Mapping as ORM;
use Doctrine\Common\Collections\ArrayCollection;

/**

* Project

*

* @ORM\Table(name="project",
uniqueConstraints={@0RM\UniqueConstraint(name="projectName", columns={"name"})},
indexes={@O0RM\Index(name="idOwner", columns={"idOwner"})})

* @ORM\Entity

&
class Project

{

/**
@var int

@ORM\Column(name="1id", type="integer", nullable=false)
@ORM\Id
@ORM\GeneratedValue(strategy="IDENTITY")

* X X ¥ ¥

*/
private $id;

/**

* @var string
*

* @ORM\Column(name="name", type="string", length=100, nullable=false)
*/
private $name;

/**

* @var string
*

* @ORM\Column(name="descriptif", type="text", length=65535, nullable=false)
*/
private $descriptif;

/**

* @var \DateTime
*

* @ORM\Column(name="startDate", type="date", nullable=false)
*/
private $startdate;

/**

* @var \DateTime
*

* @ORM\Column(name="dueDate", type="date", nullable=false)
*/
private $duedate;

/**

* @var \Developer
*

* @ORM\ManyToOne(targetEntity="Developer")

http://slamwiki2.kobject.net/ Printed on 2026/02/20 19:43

2026/02/20 19:43 5/11 TD n°3

* @ORM\JoinColumns ({

* @ORM\JoinColumn(name="idOwner", referencedColumnName="id")
* 1)

*/

private $owner;

/**
* @ORM\OneToMany(targetEntity="App\Entity\Story", mappedBy="project")
*/
private $stories;
public function construct(){
$this->stories=new ArrayCollection();

}

Créer le repository ProjectRepository :

namespace App\Repository;

use App\Entity\Project;

use Doctrine\Bundle\DoctrineBundle\Repository\ServiceEntityRepository;
use Symfony\Bridge\Doctrine\RegistryInterface;

class ProjectRepository extends ServiceEntityRepository

{
public function construct(RegistryInterface $registry)
{
parent:: construct($registry, Project::class);
}
}

Tests phpMv-UI
Service

Créer la classe ProjectsGui dans le dossier src/Services/semantic

namespace App\Services\semantic;
use Ajax\php\symfony\JquerySemantic;

class ProjectsGui extends JquerySemantic{

}
Controleur

Créer le contrdleur Projects :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:43 framework-web:symfony:td3 http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

php bin/console make:controller Projects

Test Ajax

Créer une méthode dans le service ProjectsGui permettant de générer un bouton :
Le click sur le bouton effectuera une requéte ajax vers I'adresse /projects dont le résultat sera affiché dans une
zone HTML d'id response :

namespace App\Services\semantic;
use Ajax\php\symfony\JquerySemantic;

class ProjectsGui extends JquerySemantic{
public function button(){
$bt=$this->semantic()->htmlButton("btProjects","Projets","orange");
$bt->getOnClick($this->getUrl("/projects"), "#response", ["attr"=>""]);
return $bt;

Injecter le service ProjectsGui en le passant en parameétre de la méthode index :
La méthode index appelle la génération du bouton et affiche la vue Projets/index.html.twig

namespace App\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

use App\Services\semantic\ProjectsGui;

class ProjectsController extends Controller{
/**
* @Route("/index", name="index")
*/
public function index(ProjectsGui $gui){
$gui->button();
return $gui->renderView('Projects/index.html.twig');

Créer le template Projects/index.html.twig :

extends "base.html.twig" %}

block body %}

{{ ql["btProjects"] | raw }}

<div id="response" class="ui segment"></div>
endblock %}

block javascripts %}

{{ parent() }}

{{ script foot | raw }}
{% endblock %}

~ -
o°

o°

-
o°

o°

http://slamwiki2.kobject.net/ Printed on 2026/02/20 19:43

2026/02/20 19:43 7/11 TD n°3

Ajouter la route /projects pour afficher les projets :

/**
* @Route("/projects", name="projects")
*/
public function all(ProjectRepository $projectRepo){
$projects=$projectRepo->findAll();
return $this->render('Projects/all.html.twig', ["projects"=>%$projects]);

Le template Projects/all.html.twig affiche la liste des projets :

<div class="ui inverted segment">
<div class="ui inverted relaxed divided list">
{% for project in projects %}
<div class="item">
<div class="content">
<div class="header">{{ project.name }}</div>
{{ project.descriptif }}
</div>
</div>
{% endfor %}
</div>
</div>

Boards-EmberlS
Gestion de projet SCRUM avec Emberl5s

phpMyBenchmarks
Benchmarks PHP

Cloud 64 for Rails
Build, deploy, and maintain your Rails apps on any cloud or server

Codecov
Group, merge, archive and compare coverage reports

Composant HtmIButtonGroups

Créer la méthode buttons dans la classe ProjectsGui :

public function buttons(){
$bts=$this-> semantic->htmlButtonGroups("bts",["Projects","Tags"]);
$bts->addIcons(["folder", "tags"]);
$bts->setPropertyValues("data-url", ["projects","tags"]);
$bts->getOnClick("", "#response", ["attr"=>"data-url"]);

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/_detail/framework-web/symfony/td3/projects.png?id=framework-web%3Asymfony%3Atd3

Last update: 2019/08/31 14:43 framework-web:symfony:td3 http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

}

Le click sur chaque bouton effectue une requéte ajax vers I'url définie dans data-url dont le résultat est afficher

dans I'élément HTML d'id response

Modifier le template Projects/index.html.twig pour qu'il affiche les boutons :

o°

extends "base.html.twig" %}
block body %}

{{ ql"bts"] | raw }}
<div id="response" class="ui segment"></div>

~
o°

{% endblock %}
{% block javascripts %}

{{ parent() }}

{{ script foot | raw }}
{% endblock %}

Modifier I'action index pour qu'elle appelle la méthode buttons de gui :

class ProjectsController extends Controller{
/**
* @Route("/index", name="index")
*/
public function index(ProjectsGui $gui){
$gui->buttons();

return $gui->renderView('Projects/index.html.twig');

BB Projects % Tags

Composant DataTable

Créer la classe TagsGui dans src/Services :

namespace App\Services\semantic;

use Ajax\php\symfony\JquerySemantic;

class TagsGui extends JquerySemantic{
public function dataTable($tags){

$dt=$this-> semantic->dataTable("dtTags",
return $dt;

Créer la classe Repository pour les Tags :

"App\Entity\Tag", $tags);

http://slamwiki2.kobject.net/

Printed on 2026/02/20 19:43

http://slamwiki2.kobject.net/_detail/framework-web/symfony/td3/buttons.png?id=framework-web%3Asymfony%3Atd3

2026/02/20 19:43 9/11 TD n°3

namespace App\Repository;

use Doctrine\Bundle\DoctrineBundle\Repository\ServiceEntityRepository;
use Symfony\Bridge\Doctrine\RegistryInterface;

use App\Entity\Tag;

class TagRepository extends ServiceEntityRepository

{
public function construct(RegistryInterface $registry)
{
parent:: construct($registry, Tag::class);
}
}

Créer le controller Tags et la route tags :

namespace App\Controller;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

use App\Repository\TagRepository;

use App\Services\semantic\TagsGui;

class TagsController extends Controller{

/**
* @Route("/tags", name="tags")
*/
public function index(TagsGui $gui,TagRepository $tagRepo){
$tags=$tagRepo->findAll();
$dt=$gui->dataTable($tags);
return new Response($dt);

Amélioration de I'affichage des tags :

namespace App\Services\semantic;

use Ajax\php\symfony\JquerySemantic;
use Ajax\semantic\html\elements\HtmlLabel;

class TagsGui extends JquerySemantic{
public function dataTable($tags){
$dt=$this-> semantic->dataTable("dtTags", "App\Entity\Tag", $tags);
$dt->setFields(["tag"]);
$dt->setCaptions(["Tag"]);
$dt->setValueFunction("tag", function($v,$tag){
$1lbl=new HtmlLabel("", $tag->getTitle());
$1lbl->setColor($tag->getColor());

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:43 framework-web:symfony:td3 http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

return $1lbl;

});
return $dt;

e

ag

Formulaire de modification

Ajouter une méthode *frm* dans TagsGui

public function frm(Tag $tag){
$frm=$this-> semantic->dataForm("frm-tag", $tag);
return $frm;

Créer la vue associée :

{{ q["frm-tag"] | raw }}
{{ script foot | raw }}

Créer la route affichant le formulaire dans le contréleur Tags :

/**
* @Route("tag/update/{id}", name="tag update")
*/
public function update(Tag $tag,TagsGui $tagsGui){
$tagsGui->frm($tag);
return $tagsGui->renderView('Tags/frm.html.twig');

http://slamwiki2.kobject.net/

Printed on 2026/02/20 19:43

http://slamwiki2.kobject.net/_detail/framework-web/symfony/td3/tags-2.png?id=framework-web%3Asymfony%3Atd3

2026/02/20 19:43 11/11 TD n°3

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

Last update: 2019/08/31 14:43

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/framework-web/symfony/td3?rev=1519176380

	TD n°3
	Objectifs
	Contexte
	Création du projet, intégration des composants
	Intégration Semantic
	Classes métier
	Tests phpMv-UI
	Service
	Contrôleur
	Test Ajax
	Composant HtmlButtonGroups
	Composant DataTable
	Formulaire de modification

