2026/01/28 02:12 1/5 TD n°6

TD n°6

Ce projet utilise le repository github : boards-symfony.

Symfony

¢ Projet boards
¢ Application gestion de projets SCRUM

Objectifs

1. Factorisation du code
2. Réutilisation

Prise en main

Vous pouvez au choix :

e Partir de votre propre projet et y inclure les éléments du projet Github
e Partir du projet GitHub pour y intégrer vos propres fonctionnalités (recommandé)

A partir du dossier du projet, exécuter :

composer update

Dans le fichier .env, ajuster la valeur de la variable DATABASE_URL.

Démarrer le serveur (Mysql) et le serveur http de dévelopement :

php bin/console server:run

Factorisation du code

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://github.com/s4-dut-info-2018/boards-symfony

Last update: 2019/08/31 14:21 framework-web:symfony:td6 http://slamwiki2.kobject.net/framework-web/symfony/td6

Doctrine repositories

Les repositories de chacun des models héritent de MainRepository, définissant les opérations de base CRUD
sur les objets.

MainRepository

e N +get()

+getAll()

_/‘Di-setVaIuesToObject(object values)

+update(object)
+delete(object)

DeveloperRepository

ProjectRepository

Chaque Repository héritant de MainRepository a juste a définir dans son constructeur la classe métier auquel il
correspond :

<?php
namespace App\Repository;

use Symfony\Bridge\Doctrine\RegistryInterface;
use App\Entity\Developer;

class DeveloperRepository extends MainRepository{
public function construct(RegistryInterface $registry){
parent:: construct($registry, Developer::class);

}

Services Semantic

Les services Semantic de chacun des models héritent de SemanticGui, classe définissant les opérations
utilisables dans tous les contréleurs.

SemanticGui

DevelopersGui

\D +dataTable(objects type)

+dataForm(object type)
4messageConfirmation(message type)
/D +simpleElement(content)
+realizeOperation(...)
+getHeader(title subHeader icon)

ProjectsGui

Chaque Classe Gui dérivée de SemanticGui doit logiquement redéfinir les méthodes dataTable et dataForm.

http://slamwiki2.kobject.net/ Printed on 2026/01/28 02:12

2026/01/28 02:12

3/5

TD n°6

CRUD controleurs

Chaque contrdleur pilotant une classe métier hérite de CrudController, qui définit I'ensemble des opérations

CRUD.

Projects Controller

+__construct{repo gui)
+index()
+refresh()
+edit(id)
+add()
+update(request)
+deleteConfirm (id)
+delete(id request)

CrudController

Ftype
#Hicon
#subHeader
Fgui
#repository

Developers Controller

+__construct{repo gui)
+index()
+refresh(}
+edit(id)
+add()
+update(request)
+deleteConfirm (id)
+delete(id request)

—~—
—

#_jndex()
#_refresh()
#_edit(id di)

#_add(classMName di)

#_update(reqguest class Name)
#_setValues(instance request)

#_deleteConfirm(id)
#_delete(id request)

¢ Chaque Repository héritant de MainRepository utilise les méthodes protégées de CrudController.

e Le constructeur doit initialiser par injection de dépendances une instance de MainRepository et de

SemanticGui dérivées dans son constructeur.

<?php

class DevelopersController extends CrudController{

public function construct(DevelopersGui $gui,DeveloperRepository $repo){
$this->qui=$qui;

$this->repository=$repo;
$this->type="developers";

$this->subHeader="Developer list";

$this->icon="users";

}

/**

* @Route("/developers", name="developers")

*/

public function index(){
return $this-> index();

}
/**

* @Route("/developers/refresh", name="developers refresh")

*/

public function refresh(){
return $this-> refresh();

}

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/_detail/framework-web/symfony/td6/crudcontroller.png?id=framework-web%3Asymfony%3Atd6

Last update: 2019/08/31 14:21 framework-web:symfony:td6 http://slamwiki2.kobject.net/framework-web/symfony/td6

/**
* @Route("/developers/edit/{id}", name="developers edit")
*/
public function edit($id){
return $this-> edit($id);
}
/**
* @Route("/developers/new", name="developers new")
*/
public function add(){
return $this-> add("\App\Entity\Developer");
¥

/**
* @Route("/developers/update", name="developers update")
*/
public function update(Request $request){
return $this-> update($request, "\App\Entity\Developer");
}

/**
* @Route("/developers/confirmDelete/{id}", name="developers confirm delete")
*/
public function deleteConfirm($id){
return $this-> deleteConfirm($id);

}

/**
* @Route("/developers/delete/{id}", name="developers delete")
*/
public function delete($id,Request $request){
return $this-> delete($id, $request);

}

Fonctionnalités a implémenter

CRUD

//TODO 1.1
Pour les models Tag, Step, Task, ajouter les fonctionnalités de base CRUD :

e Listage des instances dans une table
e Suppression

¢ Modification

e Ajout

Consignes :

* Respecter la logique fonctionnelle et structurelle (implémentation) mise en place dans le projet initial
e Factoriser au mieux le code

Route index

http://slamwiki2.kobject.net/ Printed on 2026/01/28 02:12

2026/01/28 02:12 5/5 TD n°6

/ITODO 1.2

Modifier la route index, pour qu'elle affiche les éléments suivants, et qu'elle permette d'accéder a chacune des
parties :

o/ —

- Developer ':_ Task
G = + Add new @ 5= 3 + A
E Project ” Step
- b @ Cas -+

- Story ‘ Tag

+ A @ 5 &

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/framework-web/symfony/td6

Last update: 2019/08/31 14:21

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/_detail/richclient/emberjs/td6/index-boards.png?id=framework-web%3Asymfony%3Atd6
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/framework-web/symfony/td6

	TD n°6
	Objectifs
	Prise en main
	Factorisation du code
	Doctrine repositories
	Services Semantic
	CRUD contrôleurs

	Fonctionnalités à implémenter
	CRUD
	Route index

