
2026/02/14 08:09 1/5 TD n°6

SlamWiki 2.1 - http://slamwiki2.kobject.net/

TD n°6

Ce projet utilise le repository github : boards-symfony.

Projet boards
Application gestion de projets SCRUM

Objectifs

Factorisation du code1.
Réutilisation2.

Prise en main

Vous pouvez au choix :

Partir de votre propre projet et y inclure les éléments du projet Github
Partir du projet GitHub pour y intégrer vos propres fonctionnalités (recommandé)

A partir du dossier du projet, exécuter :

composer update

Dans le fichier .env, ajuster la valeur de la variable DATABASE_URL.

Démarrer le serveur (Mysql) et le serveur http de dévelopement :

php bin/console server:run

Factorisation du code

https://github.com/s4-dut-info-2018/boards-symfony

Last update: 2019/08/31 14:43 framework-web:symfony:td6 http://slamwiki2.kobject.net/framework-web/symfony/td6?rev=1521580281

http://slamwiki2.kobject.net/ Printed on 2026/02/14 08:09

Doctrine repositories

Les repositories de chacun des models héritent de MainRepository, définissant les opérations de base CRUD
sur les objets.

MainRepository

+get()
+getAll()

+setValuesToObject(object values)
+update(object)
+delete(object)

DeveloperRepository

ProjectRepository

CREATED WITH YUML

Chaque Repository héritant de MainRepository a juste à définir dans son constructeur la classe métier auquel il
correspond :

<?php

namespace App\Repository;

use Symfony\Bridge\Doctrine\RegistryInterface;
use App\Entity\Developer;

class DeveloperRepository extends MainRepository{
 public function __construct(RegistryInterface $registry){
 parent::__construct($registry, Developer::class);
 }
}

Services Semantic

Les services Semantic de chacun des models héritent de SemanticGui, classe définissant les opérations
utilisables dans tous les contrôleurs.

SemanticGui

+dataTable(objects type)
+dataForm(object type)

+messageConfirmation(message type)
+simpleElement(content)

+realizeOperation(...)
+getHeader(title subHeader icon)

DevelopersGui

ProjectsGui

CREATED WITH YUML

Chaque Classe Gui dérivée de SemanticGui doit logiquement redéfinir les méthodes dataTable et dataForm.

2026/02/14 08:09 3/5 TD n°6

SlamWiki 2.1 - http://slamwiki2.kobject.net/

CRUD contrôleurs

Chaque contrôleur pilotant une classe métier hérite de CrudController, qui définit l'ensemble des opérations
CRUD.

Chaque Repository héritant de MainRepository utilise les méthodes protégées de CrudController.
Le constructeur doit initialiser par injection de dépendances une instance de MainRepository et de
SemanticGui dérivées dans son constructeur.

<?php
class DevelopersController extends CrudController{
 public function __construct(DevelopersGui $gui,DeveloperRepository $repo){
 $this->gui=$gui;
 $this->repository=$repo;
 $this->type="developers";
 $this->subHeader="Developer list";
 $this->icon="users";
 }
 /**
 * @Route("/developers", name="developers")
 */
 public function index(){
 return $this->_index();
 }
 /**
 * @Route("/developers/refresh", name="developers_refresh")
 */
 public function refresh(){
 return $this->_refresh();
 }

http://slamwiki2.kobject.net/_detail/framework-web/symfony/td6/crudcontroller.png?id=framework-web%3Asymfony%3Atd6

Last update: 2019/08/31 14:43 framework-web:symfony:td6 http://slamwiki2.kobject.net/framework-web/symfony/td6?rev=1521580281

http://slamwiki2.kobject.net/ Printed on 2026/02/14 08:09

 /**
 * @Route("/developers/edit/{id}", name="developers_edit")
 */
 public function edit($id){
 return $this->_edit($id);
 }
 /**
 * @Route("/developers/new", name="developers_new")
 */
 public function add(){
 return $this->_add("\App\Entity\Developer");
 }

 /**
 * @Route("/developers/update", name="developers_update")
 */
 public function update(Request $request){
 return $this->_update($request, "\App\Entity\Developer");
 }
 /**
 * @Route("/developers/confirmDelete/{id}", name="developers_confirm_delete")
 */
 public function deleteConfirm($id){
 return $this->_deleteConfirm($id);
 }
 /**
 * @Route("/developers/delete/{id}", name="developers_delete")
 */
 public function delete($id,Request $request){
 return $this->_delete($id, $request);
 }
}

Fonctionnalités à implémenter

CRUD

//TODO 1.1

Pour les models tag, step, task, ajouter les fonctionnalités de base CRUD :

Listage des instances dans une table
Suppression
Modification
Ajout

Consignes :

Respecter la logique fonctionnelle et structurelle (implémentation) mise en place dans le projet
Factoriser au mieux le code

Route index

2026/02/14 08:09 5/5 TD n°6

SlamWiki 2.1 - http://slamwiki2.kobject.net/

//TODO 1.2

Modifier la route index, pour qu'elle affiche les éléments suivants, et qu'elle permette d'accéder à chacune des
parties :

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/framework-web/symfony/td6?rev=1521580281

Last update: 2019/08/31 14:43

http://slamwiki2.kobject.net/_detail/richclient/emberjs/td6/index-boards.png?id=framework-web%3Asymfony%3Atd6
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/framework-web/symfony/td6?rev=1521580281

	TD n°6
	Objectifs
	Prise en main
	Factorisation du code
	Doctrine repositories
	Services Semantic
	CRUD contrôleurs

	Fonctionnalités à implémenter
	CRUD
	Route index

