
2026/01/28 11:17 1/10 Micro-Framework

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Micro-Framework

Le framework décrit ci-dessous est à finalité pédagogique : il permet uniquement de faciliter et d'accélérer le
développement, en respectant le design pattern MVC.

Vous pouvez également consulter la documentation des classes déjà existantes (Micro-framework & helpdesk) :
Documentation API

-- Installation pour tests

Télécharger ou cloner le projet https://github.com/jcheron/helpdesk
Copier les fichiers dans le dossier htdocs de votre serveur.
Renommer le dossier helpdesk-master en helpdesk

-- Configuration

Exécuter le script database/helpdesk.sql dans phpmyadmin pour créer la base de données1.
Editer le fichier de configuration app/config.php, et mettez éventuellement à jour les paramètres (siteUrl)2.
:

<?php
return array(
 "siteUrl"=>"http://127.0.0.1/helpdesk/",
 "documentRoot"=>"DefaultC",
 "database"=>[
 "dbName"=>"helpdesk",
 "serverName"=>"127.0.0.1",
 "port"=>"3306",
 "user"=>"root",
 "password"=>""
],
 "directories"=>["my"]
);

Vérifier également le paramètre RewriteBase du fichier .htaccess :

AddDefaultCharset UTF-8

<IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteBase /helpdesk/
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteCond %{HTTP_ACCEPT} !(.*images.*)
 RewriteRule ^(.*)$ app/startup.php?c=$1 [L]
</IfModule>

http://api.kobject.net/micro-framework/
https://github.com/jcheron/helpdesk

Last update:
2019/08/31 14:21 php-rt:projets:projet-2015:micro-framework http://slamwiki2.kobject.net/php-rt/projets/projet-2015/micro-framework

http://slamwiki2.kobject.net/ Printed on 2026/01/28 11:17

Le module rewrite doit être activé sur le serveur web apache.

Tester l'installation en allant à l'adresse : http://127.0.0.1/helpdesk/

-- Structure
Elément Emplacement Rôle
Configuration app/config.php Fichier de configuration
Contrôleurs app/controllers/ Définissent les URLs et la logique applicative
Vues app/views/ Interfaces HTML/PHP
Modèles app/models/ Classes métier
Divers app/my Classes personnelles

-- Modèles et mappage objet/relationnel

Les modèles sont les classes métiers correspondant aux tables de la base de données.
Chaque objet instancié correspond à un enregistrement de la table correspondante (table du même nom que la
classe).
Chaque membre de données d'un objet correspond à un champ du même nom de la table correspondante.

Les modèles sont stockés dans le dossier app/models

-- Contrôleurs, vues

Un contrôleur est une classe héritant de BaseController et définie dans le dossier app/controllers.
Chaque contrôleur permet de définir un ensemble d'URL, en respectant le principe suivant :

http://slamwiki2.kobject.net/_detail/php-rt/projets/projet-2015/defaultpagetest.png?id=php-rt%3Aprojets%3Aprojet-2015%3Amicro-framework

2026/01/28 11:17 3/10 Micro-Framework

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Chaque méthode d'un contrôleur définit une ou plusieurs URL :

Url sollicitée Appel réalisé
/controllerName/ Méthode index sur ControllerName
/controllerName/methodName/ Méthode methodName sur ControllerName

/controllerName/methodName/param1 Méthode methodName sur ControllerName avec passage du
paramètre param

Les vues sont responsables de l'affichage des données (passées par le contrôleur), elles contiennent
majoritairement du HTML (peu de PHP), et ne doivent pas effectuer de traitements.
Elles sont stockées dans le dossier app/views.

-- Chargement de données

Le rôle d'un contrôleur peut être de charger des données (depuis la BDD)

Exemple : chargement de tous les utilisateurs

class ExempleController extends BaseController{
 public function index(){
 $users=DAO::getAll("User");
 ...
 }
}

-- Affichage d'une ou plusieurs vues

Ou d'afficher des vues :

Exemple : Chargement de la vue vHeader.php

class ExempleController extends BaseController{
 public function index(){
 ...
 $this->loadView("main/vHeader");
 }
}

http://slamwiki2.kobject.net/_detail/php-rt/projets/projet-2015/urlsengine.png?id=php-rt%3Aprojets%3Aprojet-2015%3Amicro-framework

Last update:
2019/08/31 14:21 php-rt:projets:projet-2015:micro-framework http://slamwiki2.kobject.net/php-rt/projets/projet-2015/micro-framework

http://slamwiki2.kobject.net/ Printed on 2026/01/28 11:17

-- Passage de données à une vue

…D'afficher des vues en leur passant des données…

Passage d'une variable

class ExempleController extends BaseController{
 public function index(){
 $users=DAO::getAll("User");
 $this->loadView("main/vUsers",$users);
 }
}

Récupération d'une variable dans la vue

print_r($data);

Passage de plusieurs variables

class ExempleController extends BaseController{
 public function index(){
 $users=DAO::getAll("User");
 $this->loadView("main/vUsers",array("users"=>$users,"title"=>"Liste des
utilisateurs");
 }
}

Récupération de plusieurs variables dans la vue

Les clefs du tableau associatif passé correspondent aux variables accessibles depuis la vue :

echo "<h1>".$title."</h1>"
print_r($users);

-- Mise en place de contrôle d'accès

Pour restreindre l'accès aux URLs définies par un contrôleur :

Implémenter la méthode isValid du contrôleur :

On vérifie dans l'exemple suivant l'existence d'une variable de session user

2026/01/28 11:17 5/10 Micro-Framework

SlamWiki 2.1 - http://slamwiki2.kobject.net/

class ExempleController extends BaseController{
 public function isValid(){
 return isset($_SESSION["user"]);
 }
}

Si la méthode isValid retourne false, la méthode onInvalidControl est automatiquement appelée :

class ExempleController extends BaseController{
 public function onInvalidControl(){
 echo "Accès interdit";
 exit;
 }
}

-- Accès aux données

-- Lecture de données

-- Chargement d'un enregistrement

Chargement du ticket d'id égal à 1 :

 $ticket=DAO::getOne("Ticket",1);

Les données uniques associées à un objet chargé depuis la base sont accessibles :

 //Utilisateur associé au ticket
 echo $ticket->getUser();
 //Catégorie associée au ticket
 echo $ticket->getCategorie();

Les données multiples associées à un objet chargé depuis la base doivent être explicitement chargées :

Chargement des messages liés au ticket :

 $messages=DAO::getOneToMany($ticket, "messages");

Chargement conditionnel d'un ticket :

Last update:
2019/08/31 14:21 php-rt:projets:projet-2015:micro-framework http://slamwiki2.kobject.net/php-rt/projets/projet-2015/micro-framework

http://slamwiki2.kobject.net/ Printed on 2026/01/28 11:17

 $ticket=DAO::getOne("Ticket","title='Ecran bleu'");

-- Chargement de listes d'objets

Chargement de tous les tickets :

 $tickets=DAO::getAll("Ticket");

La méthode getAll retourne un tableau qu'il est possible de parcourir :

 $tickets=DAO::getAll("Ticket");
 foreach($tickets as $ticket){
 echo $ticket->toString()."
";
 }

Chargement conditionnel des tickets de la catégorie d'id 2 :

 $tickets=DAO::getAll("Ticket","idCategorie=2");

Chargement avec classement par ordre de date de creation :

 $tickets=DAO::getAll("Ticket","1=1 ORDER BY dateCreation ASC");

Chargement des 5 premiers enregistrements :

 $tickets=DAO::getAll("Ticket","1=1 LIMIT 5");

-- Mise à jour de données

-- Insertion

2026/01/28 11:17 7/10 Micro-Framework

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 $user=new User();
 $user->setLogin("jDoe");
 $user->setMail("jdoe@local.fr");
 $user->setPassword("wzrtb");
 DAO::insert($user);

Il est préférable de gérer l'impossibilité de l'ajout et les erreurs avec une gestion des exception (try…catch) :

 $user=new User();
 $user->setLogin("jDoe");
 $user->setMail("jdoe@local.fr");
 $user->setPassword("wzrtb");
 try{
 DAO::insert($user);
 echo "Utilisateur ajouté";
 }catch(Exception $e){
 echo "Erreur lors de l'ajout";
 }

-- Mise à jour

La mise à jour nécessite que l'objet à mettre à jour ait été chargé depuis la base de données :

 $user=DAO::getOne("User",5);
 $user->setLogin("johnDoe");
 try{
 DAO::update($user);
 echo "Utilisateur modifié";
 }catch(Exception $e){
 echo "Erreur lors de la modification";
 }

-- Suppression

La suppression nécessite que l'objet à supprimer ait été chargé depuis la base de données :

 $user=DAO::getOne("User",5);
 try{
 DAO::delete($user);
 echo "Utilisateur supprimé";
 }catch(Exception $e){
 echo "Erreur lors de la suppression";
 }

Last update:
2019/08/31 14:21 php-rt:projets:projet-2015:micro-framework http://slamwiki2.kobject.net/php-rt/projets/projet-2015/micro-framework

http://slamwiki2.kobject.net/ Printed on 2026/01/28 11:17

-- Exemples

Gestion des utilisateurs

Créer un contrôleur CUsers héritant de _DefaultController dans le dossier app/controllers

Implémenter le constructeur de la façon suivante :

$title est le titre affiché sur la page
$model la classe du modèle associé

<?php
class CUsers extends _DefaultController {

 public function CUsers(){
 $this->title="Utilisateurs";
 $this->model="User";
 }

}

L'adresse http://127.0.0.1/helpdesk/cusers affiche maintenant la liste des utilisateurs :

Ajout/Modification

Créer la vue app/views/cusers/vAdd.php ; elle affiche un formulaire d'ajout ou de modification d'un utilisateur
$user :

<form method="post" action="cusers/update">
<fieldset>
<legend>Ajouter/modifier un utilisateur</legend>
<div class="alert alert-info">Utilisateur : <?php echo $user->toString()?></div>
<div class="form-group">
 <input type="hidden" name="id" value="<?php echo $user->getId()?>">
 <input type="mail" name="mail" value="<?php echo $user->getMail()?>"
placeholder="Entrez l'adresse email" class="form-control">
 <input type="text" name="login" value="<?php echo $user->getLogin()?>"
placeholder="Entrez un login" class="form-control">
 <input type="password" name="password" value="<?php echo

http://slamwiki2.kobject.net/_detail/php-rt/projets/projet-2015/cusers.png?id=php-rt%3Aprojets%3Aprojet-2015%3Amicro-framework

2026/01/28 11:17 9/10 Micro-Framework

SlamWiki 2.1 - http://slamwiki2.kobject.net/

$user->getPassword()?>" placeholder="Entrez le mot de passe" class="form-control">
 <div class="checkbox">
 <label><input type="checkbox" name="admin" <?php echo
($user->getAdmin()?"checked":"")?> value="1">Administrateur ?</label>
 </div>
</div>
<div class="form-group">
 <input type="submit" value="Valider" class="btn btn-default">
 <a class="btn btn-default" href="<?php echo
$config["siteUrl"]?>cusers">Annuler
</div>
</fieldset>
</form>

Cette vue sera appelée sur l'action frm du contrôleur CUsers ; la méthode frm doit donc initialiser l'instance
$user, puis ensuite charger la vue vAdd.php :

 public function frm($id=NULL){
 $user=$this->getInstance($id);
 $this->loadView("cusers/vAdd",array("user"=>$user));
 }

La méthode getInstance retourne l'utilisateur chargé depuis la base si $id est renseigné, ou un nouvel
utilisateur dans le cas contraire.

L'ajout et la modification doivent maintenant fonctionner, excepté pour le champ admin, de type booléen, et
défini par une case à cocher.
Il faut dans ce cas sur-définir la méthode setValuesToObject de la classe de base _DefaultController, pour
faire en sorte que admin ne soit vrai que si la case admin du formulaire est cochée

 protected function setValuesToObject(&$object) {
 parent::setValuesToObject($object);
 $object->setAdmin(isset($_POST["admin"]));
 }

-- JavaScript/Jquery

L'introduction de scripts Jquery se fait dans les contrôleurs, par l'intermédiaire des méthodes de la classe Jquery

-- Requête ajax get vers une Url

Exécution directe :

Appel de l'url users/frm dont le résultat est affiché dans la zone html d'id response

http://api.kobject.net/micro-framework/class-micro.js.Jquery.html

Last update:
2019/08/31 14:21 php-rt:projets:projet-2015:micro-framework http://slamwiki2.kobject.net/php-rt/projets/projet-2015/micro-framework

http://slamwiki2.kobject.net/ Printed on 2026/01/28 11:17

 echo Jquery::get("users/frm","#response");

Exécution sur évènement :

Appel de l'url users/frm dont le résultat est affiché dans la zone html d'id response sur click du bouton d'id
btAfficher

 echo Jquery::getOn("#btAfficher","click","users/frm","#response");

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/php-rt/projets/projet-2015/micro-framework

Last update: 2019/08/31 14:21

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/php-rt/projets/projet-2015/micro-framework

	Micro-Framework
	-- Installation pour tests
	-- Configuration
	-- Structure
	-- Modèles et mappage objet/relationnel
	-- Contrôleurs, vues
	-- Chargement de données
	-- Affichage d'une ou plusieurs vues
	-- Passage de données à une vue
	Passage d'une variable
	Récupération d'une variable dans la vue
	Passage de plusieurs variables
	Récupération de plusieurs variables dans la vue

	-- Mise en place de contrôle d'accès

	-- Accès aux données
	-- Lecture de données
	-- Chargement d'un enregistrement
	-- Chargement de listes d'objets

	-- Mise à jour de données
	-- Insertion
	-- Mise à jour
	-- Suppression

	-- Exemples
	Gestion des utilisateurs
	Ajout/Modification

	-- JavaScript/Jquery
	-- Requête ajax get vers une Url

