2026/01/14 07:00 1/10 Micro-Framework

Micro-Framework

Le framework décrit ci-dessous est a finalité pédagogique : il permet uniqguement de faciliter et d'accélérer le
développement, en respectant le design pattern MVC.

Vous pouvez également consulter la documentation des classes déja existantes (Micro-framework & Cloud) :
Documentation API

-- Installation pour tests

e Télécharger ou cloner le projet https://github.com/jcheron/RT-Cloud
¢ Copier les fichiers dans le dossier htdocs de votre serveur.
e Renommer éventuellement le dossier RT-Cloud-master en RT-Cloud

-- Configuration

1. Exécuter le script database/cloud.sql dans phpmyadmin pour créer la base de données
2. Editer le fichier de configuration app/config.php, et mettez éventuellement a jour les parametres (siteUrl)

<?php
return array(
"siteUrl"=>"http://127.0.0.1/RT-Cloud/",
"documentRoot"=>"Accueil",
"database"=>[
"dbName"=>"cloud",
"serverName"=>"127.0.0.1",
"port"=>"3306",
“user"=>"root",
"password"=>""
I
"directories"=>["my"]

);

Vérifier également le parametre RewriteBase du fichier .htaccess :

AddDefaultCharset UTF-8

<IfModule mod rewrite.c>
RewriteEngine On
RewriteBase /RT-Cloud/
RewriteCond %{REQUEST FILENAME} !-f
RewriteCond %{HTTP_ACCEPT} !(.*images.*)
RewriteRule ~(.*)$ app/index.php?c=$1 [L]
</IfModule>

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://api.kobject.net/micro-framework/
https://github.com/jcheron/RT-Cloud

Last update:

2019/08/31 14:21 php-rt:projets:projet-2016:micro-framework http://slamwiki2.kobject.net/php-rt/projets/projet-2016/micro-framework

Le module rewrite doit étre activé sur le serveur web apache.

Tester I'installation en allant a I'adresse : http://127.0.0.1/RT-Cloud/

Connexion en tant gque.. =

Interface provisoire de test

A implémenter (avec connexion Client nécessaire)

Mg disquass ATO00 11 Disigise Datas fid=1T) 700012 Crdor um deaue /000 1.3

A implémenter (avec connexion Admin nécessaire)

Adminetraten G021 LRiksateurs AEOO 22 Diesques ATEHNEED

Connexion

-- Structure

Elément Emplacement |Rdle
Configuration|app/config.php |Fichier de configuration
Controleurs |app/controllers/|Définissent les URLs et la logique applicative

Vues app/views/ Interfaces HTML/PHP
Modeles app/models/ |Classes métier
Divers app/my Classes personnelles

-- Modeles et mappage objet/relationnel

Les modeles sont les classes métiers correspondant aux tables de la base de données.
Chaque objet instancié correspond a un enregistrement de la table correspondante (table du méme nom que la

classe).
Chaque membre de données d'un objet correspond a un champ du méme nom de la table correspondante.

Les modeéles sont stockés dans le dossier app/models

-- Controleurs, vues

Un contrdleur est une classe héritant de BaseController et définie dans le dossier app/controllers.
Chaque contréleur permet de définir un ensemble d'URL, en respectant le principe suivant :

Chaque méthode d'un contréleur définit une ou plusieurs URL :

http://slamwiki2.kobject.net/ Printed on 2026/01/14 07:00

http://slamwiki2.kobject.net/_detail/php-rt/projets/projet-2016/default.png?id=php-rt%3Aprojets%3Aprojet-2016%3Amicro-framework

2026/01/14 07:00 3/10 Micro-Framework

Controleur Users
http:/4/127.0.01/RT-Cloud/users/update/1 paramétre 1

méthode update

appel de new Users()->update(1)

Url sollicitée Appel réalisé
/controllerName/ Méthode index sur ControllerName
/controllerName/methodName/ Méthode methodName sur ControllerName

Méthode methodName sur ControllerName avec passage du

/controllerName/methodName/param1 \
parametre param

Les vues sont responsables de I'affichage des données (passées par le contrbleur), elles contiennent
majoritairement du HTML (peu de PHP), et ne doivent pas effectuer de traitements.
Elles sont stockées dans le dossier app/views.

-- Chargement de données

Le rble d'un contréleur peut étre de charger des données (depuis la BDD)

Exemple : chargement de tous les utilisateurs

class ExempleController extends BaseController{
public function index(){
$users=DA0: :getAll("User");

-- Affichage d'une ou plusieurs vues

Ou d'afficher des vues :

Exemple : Chargement de la vue vHeader.php

class ExempleController extends BaseController{
public function index(){

$this->loadView("main/vHeader");

-- Passage de données a une vue

...D'afficher des vues en leur passant des données...

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/_detail/php-rt/projets/projet-2016/urlsengine.png?id=php-rt%3Aprojets%3Aprojet-2016%3Amicro-framework

Last update:

2019/08/31 14:21 php-rt:projets:projet-2016:micro-framework http://slamwiki2.kobject.net/php-rt/projets/projet-2016/micro-framework

Passage d'une variable

class ExempleController extends BaseController{
public function index(){
$users=DA0: :getAll("User");
$this->loadView("main/vUsers", $users);

Récupération d'une variable dans la vue

print r($data);

Passage de plusieurs variables

class ExempleController extends BaseController{
public function index(){
$users=DA0: :getAll("User");
$this->loadView("main/vUsers",array("users"=>%$users,"title"=>"Liste des
utilisateurs");
}
}

Récupération de plusieurs variables dans la vue

Les clefs du tableau associatif passé correspondent aux variables accessibles depuis la vue :

echo "<hl>".$title."</h1>"
print r($users);

-- Vues avec le moteur de template Twig

Le micro-framework peut utiliser le moteur de template Twig (son utilisation est définie dans le fichier
config.php).

Il faut ensuite charger les vues en utilisant I'extension html, depuis le contréleur.

-- Mise en place de controdle d'acces

Pour restreindre I'accés aux URLs définies par un contréleur :

http://slamwiki2.kobject.net/ Printed on 2026/01/14 07:00

http://twig.sensiolabs.org/documentation

2026/01/14 07:00 5/10

Micro-Framework

Implémenter la méthode isValid du controleur :

On vérifie dans I'exemple suivant I'existence d'une variable de session user

class ExempleController extends BaseController{
public function isValid(){
return isset($ SESSION["user"]);
}

Si la méthode isValid retourne false, la méthode onlnvalidControl est automatiquement appelée :

class ExempleController extends BaseController{
public function onInvalidControl(){
echo "Acces interdit";
exit;

-- Acces aux données

-- Lecture de données
-- Chargement d'un enregistrement

Chargement du ticket d'id égal a 1 :

$ticket=DA0: :getOne("Ticket",1);

Les données uniques associées a un objet chargé depuis la base sont accessibles :

//Utilisateur associé au ticket
echo $ticket->getUser();
//Catégorie associée au ticket
echo $ticket->getCategorie();

Les données multiples associées a un objet chargé depuis la base doivent étre explicitement chargées :

Chargement des messages liés au ticket :

$messages=DA0: :getOneToMany($ticket, "messages");

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update:

2019/08/31 14:21 php-rt:projets:projet-2016:micro-framework http://slamwiki2.kobject.net/php-rt/projets/projet-2016/micro-framework

Chargement conditionnel d'un ticket :

$ticket=DA0: :getOne("Ticket","title="Ecran bleu'");

-- Chargement de listes d'objets

Chargement de tous les tickets :

$tickets=DA0::getAll("Ticket");

La méthode getAll retourne un tableau qu'il est possible de parcourir :

$tickets=DA0::getAll("Ticket");
foreach($tickets as $ticket){

echo $ticket->toString()."
";
}

Chargement conditionnel des tickets de la catégorie d'id 2 :

$tickets=DA0::getAll("Ticket", "idCategorie=2");

Chargement avec classement par ordre de date de creation :

$tickets=DA0::getAll("Ticket","1=1 ORDER BY dateCreation ASC");

Chargement des 5 premiers enregistrements :

$tickets=DA0: :getAll("Ticket","1=1 LIMIT 5"),;

http://slamwiki2.kobject.net/ Printed on 2026/01/14 07:00

2026/01/14 07:00 7/10 Micro-Framework

-- Mise a jour de données

-- Insertion

$user=new User();
$user->setlLogin("jDoe");
$user->setMail("jdoe@local.fr");
$user->setPassword("wzrtb");
DAO: :insert($user);

Il est préférable de gérer I'impossibilité de I'ajout et les erreurs avec une gestion des exception (try...catch) :

$user=new User();
$user->setLogin("jDoe");
$user->setMail("jdoe@local.fr");
$user->setPassword("wzrtb");
try{

DAO: :insert($user);

echo "Utilisateur ajouté";
}catch(Exception $e){

echo "Erreur lors de l'ajout";

}
-- Mise a jour

La mise a jour nécessite que I'objet a mettre a jour ait été chargé depuis la base de données :

$user=DA0: :getOne("User",5);
$user->setLogin("johnDoe");
try{

DAO: :update($user);

echo "Utilisateur modifié";
}catch(Exception $e){

echo "Erreur lors de la modification";

}
-- Suppression

La suppression nécessite que I'objet a supprimer ait été chargé depuis la base de données :

$user=DA0: :getOne("User",5);

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: erriabe prmlab ol . o)) . . I
2019/08/31 14:21 php-rt:projets:projet-2016:micro-framework http://slamwiki2.kobject.net/php-rt/projets/projet-2016/micro-framework

try{

DAO: :delete($user);

echo "Utilisateur supprimé";
}catch(Exception $e){

echo "Erreur lors de la suppression";

}

-- Exemples

Gestion des utilisateurs

Créer un contréleur CUsers héritant de _DefaultController dans le dossier app/controllers
Implémenter le constructeur de la facon suivante :

o $title est le titre affiché sur la page
¢ $model la classe du modele associé

<?php
class CUsers extends \ DefaultController {

public function CUsers(){

$this->title="Utilisateurs";
$this->model="User";

L'adresse http://127.0.0.1/helpdesk/cusers affiche maintenant la liste des utilisateurs :

Utilisateurs

L

Ajout/Modification

Créer la vue app/views/cusers/vAdd.php ; elle affiche un formulaire d'ajout ou de modification d'un utilisateur
$user :

<form method="post" action="cusers/update">
<fieldset>
<legend>Ajouter/modifier un utilisateur</legend>

http://slamwiki2.kobject.net/ Printed on 2026/01/14 07:00

http://slamwiki2.kobject.net/_detail/php-rt/projets/projet-2015/cusers.png?id=php-rt%3Aprojets%3Aprojet-2016%3Amicro-framework

2026/01/14 07:00 9/10 Micro-Framework

<div class="alert alert-info">Utilisateur : <?php echo $user->toString()?></div>
<div class="form-group">
<input type="hidden" name="id" value="<?php echo $user->getId()?>">
<input type="mail" name="mail" value="<?php echo $user->getMail()?>"
placeholder="Entrez 1'adresse email" class="form-control">
<input type="text" name="login" value="<?php echo $user->getLogin()?>"
placeholder="Entrez un login" class="form-control">
<input type="password" name="password" value="<?php echo
$user->getPassword()?>" placeholder="Entrez le mot de passe" class="form-control">
<div class="checkbox">
<label><input type="checkbox" name="admin" <?php echo
($user->getAdmin()?"checked":"")?> value="1">Administrateur ?</label>
</div>
</div>
<div class="form-group">
<input type="submit" value="Valider" class="btn btn-default">
<a class="btn btn-default" href="<?php echo
$config["siteUrl"]?>cusers">Annuler
</div>
</fieldset>
</form>

Cette vue sera appelée sur l'action frm du controleur CUsers ; la méthode frm doit donc initialiser I'instance
$user, puis ensuite charger la vue vAdd.php :

public function frm($id=NULL) {
$user=$this->getInstance($id);
$this->loadView("cusers/vAdd" ,array("user"=>%user));

La méthode getinstance retourne I'utilisateur chargé depuis la base si $id est renseigné, ou un nouvel
utilisateur dans le cas contraire.

L'ajout et la modification doivent maintenant fonctionner, excepté pour le champ admin, de type booléen, et

défini par une case a cocher.
[l faut dans ce cas sur-définir la méthode setValuesToObject de la classe de base _DefaultController, pour
faire en sorte que admin ne soit vrai que si la case admin du formulaire est cochée

protected function setValuesToObject(&$object) {
parent::setValuesToObject($object);
$object->setAdmin(isset($ POST["admin"]));

-- JavaScript/jquery

L'introduction de scripts Jquery se fait dans les contréleurs, par I'intermédiaire des méthodes de la classe Jquery

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://api.kobject.net/micro-framework/class-micro.js.Jquery.html

Last update:

2019/08/31 14:21 php-rt:projets:projet-2016:micro-framework http://slamwiki2.kobject.net/php-rt/projets/projet-2016/micro-framework

-- Requéte ajax get vers une Url

Exécution directe :

Appel de I'url users/frm dont le résultat est affiché dans la zone html d'id response

echo Jquery::get("users/frm", "#response");

Exécution sur événement :

Appel de I'url users/frm dont le résultat est affiché dans la zone html d'id response sur click du bouton d'id
btAfficher

echo Jquery::getOn("#btAfficher","click","users/frm", "#response");

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/php-rt/projets/projet-2016/micro-framework

Last update: 2019/08/31 14:21

http://slamwiki2.kobject.net/ Printed on 2026/01/14 07:00

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/php-rt/projets/projet-2016/micro-framework

	Micro-Framework
	-- Installation pour tests
	-- Configuration
	-- Structure
	-- Modèles et mappage objet/relationnel
	-- Contrôleurs, vues
	-- Chargement de données
	-- Affichage d'une ou plusieurs vues
	-- Passage de données à une vue
	Passage d'une variable
	Récupération d'une variable dans la vue
	Passage de plusieurs variables
	Récupération de plusieurs variables dans la vue

	-- Vues avec le moteur de template Twig
	-- Mise en place de contrôle d'accès

	-- Accès aux données
	-- Lecture de données
	-- Chargement d'un enregistrement
	-- Chargement de listes d'objets

	-- Mise à jour de données
	-- Insertion
	-- Mise à jour
	-- Suppression

	-- Exemples
	Gestion des utilisateurs
	Ajout/Modification

	-- JavaScript/Jquery
	-- Requête ajax get vers une Url

