2026/01/29 08:10 1/5 Opérations CRUD

Opérations CRUD

Store
Récupération du store, dans un contréleur ou un route handler :

let store=this.get('store');

Read : chargement d'enregistrements

1 enregistrement

Chargement d'une instance de person

let person = this.get('store').findRecord('person', 1);

Recherche d'une instance de person déja chargée (ne retourne que si elle est déja présente dans le store, sans
effectuer de requéte vers le serveur) :

let person = this.get('store').peekRecord('person', 1);
Plusieurs enregistrements

Chargement de toutes les instances de person :

let persons = this.get('store').findAll('person');

Retour des instances de person déja chargée dans le store :

let persons = this.get('store').peekAll('person');
Recherche par criteres

De plusieurs enregistrements

this.get('store').query('person', {
filter: {
name: 'Peter'’
}
}) .then(function(peters) {
// Do something with “peters’

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 richclient:emberjs:data:crud http://slamwiki2.kobject.net/richclient/emberjs/data/crud

1)

D'un seul enregistrement

this.get('store').queryRecord('person', {
filter: {
id: 1234
}
}).then(function(user) {
// Do something with “user’

3

Create

Toutes les opérations de modification (ajout, modification, suppression) fonctionnent en 2 étapes :

» Réalisation de la modification (appel de createRecord, deleteRecord, updateRecord...)
¢ Mise a jour sur le serveur (save)

Création d'une instance

let post = store.createRecord('post', {
title: 'Rails is Omakase',
body: 'Lorem ipsum'

});

Mise a jour de la création (persistance) :

post.save();

Update

Mise a jour de l'instance avec setter et persistance :

this.get('store').findRecord('person’, 1).then(function(tyrion) {
// ...after the record has loaded
tyrion.set('firstName', 'Yollo');

tyrion.save();

});

Delete

Suppression d'une instance et persistance :

http://slamwiki2.kobject.net/ Printed on 2026/01/29 08:10

2026/01/29 08:10 3/5 Opérations CRUD

post.deleteRecord();
post.get('isDeleted'); // => true
post.save(); // => DELETE to /posts/1l

Il est possible d'utiliser destroyRecord pour effectuer directement la suppression :

post.destroyRecord();

Flags, dirty attributes et annulation

Tant que la méthode save n'est pas appelée, la persistance n'est pas réalisée, et les instances modifiées
portent les flags mentionnant leurs modifications :

¢ isDirty
e jsDeleted
¢ isNew

person.get('isAdmin'); // => false
person.get('hasDirtyAttributes'); // => false
person.set('isAdmin', true);

person.get('hasDirtyAttributes'); // => true
person.changedAttributes(); // => { isAdmin: [false, true] }

Il est possible d'annuler les modifications avec rollbackAttributes tant que 'appel de la méthode save n'a pas
été effectué.

person.get('hasDirtyAttributes'); // => true
person.changedAttributes(); // => { isAdmin: [false, true] }

person.rollbackAttributes();
person.get('hasDirtyAttributes'); // => false

person.get('isAdmin'); // => false
person.changedAttributes(); /7 => {}

Erreurs de validation

Coté router, il est possible d'utiliser le error hook pour intercepter les erreurs de chargement/mise a jour,

import Route from '@ember/routing/route’;

export default Route.extend({
model(params) {
return this.get('store').findAll('privileged-model');
}

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 richclient:emberjs:data:crud http://slamwiki2.kobject.net/richclient/emberjs/data/crud

actions: {
error(error, transition) {
if (error.status === '403') {
this.replaceWith('login');
} else {
// Let the route above this handle the error.
return true;

1}

Si le serveur retourne des erreurs de validation au moment du save, la propriété errors du model permet de les
afficher :

{{#each post.errors.title as |error|}}

<div class="error">{{error.message}}</div>
{{/each}}
{{#each post.errors.body as |error|}}

<div class="error">{{error.message}}</div>
{{/each}}

Il existe également un loading event permettant d'intervenir sur le chargement :

import Route from '@ember/routing/route’;
export default Route.extend({

actions: {
loading(transition) {
let start = new Date();
transition.promise.finally(() => {
this.get('notifier').notify(Took ${new Date() - start}ms to load);
});

return true;

1}

Promises

Toutes les méthodes du store interrogeant le serveur (find, findAll, query, save...) retournent une “promise”
permettant d'intercepter la fin du chargement, ou les erreurs éventuelles.

let persons=this.get('store').findAll("'person').then(function(datas){
//les données datas sont chargées
}) .catch(function(reason){

http://slamwiki2.kobject.net/ Printed on 2026/01/29 08:10

2026/01/29 08:10 5/5

Opérations CRUD

//Erreurs de chargement

1)

let post = store.createRecord('post', {
title: 'Rails is Omakase',
body: 'Lorem ipsum'

B

let self = this;

function transitionToPost(post) {
self.transitionToRoute('posts.show', post);

}

function failure(reason) {
// handle the error

}

post.save().then(transitionToPost).catch(failure);

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/richclient/emberjs/data/crud

Last update: 2019/08/31 14:21

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/richclient/emberjs/data/crud

	Opérations CRUD
	Store
	Read : chargement d'enregistrements
	1 enregistrement
	Plusieurs enregistrements
	Recherche par critères

	Create
	Update
	Delete
	Flags, dirty attributes et annulation
	Erreurs de validation
	Promises

