
2026/01/29 08:10 1/5 Opérations CRUD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Opérations CRUD

Store

Récupération du store, dans un contrôleur ou un route handler :

let store=this.get('store');

Read : chargement d'enregistrements

1 enregistrement

Chargement d'une instance de person

let person = this.get('store').findRecord('person', 1);

Recherche d'une instance de person déjà chargée (ne retourne que si elle est déjà présente dans le store, sans
effectuer de requête vers le serveur) :

let person = this.get('store').peekRecord('person', 1);

Plusieurs enregistrements

Chargement de toutes les instances de person :

let persons = this.get('store').findAll('person');

Retour des instances de person déjà chargée dans le store :

let persons = this.get('store').peekAll('person');

Recherche par critères

De plusieurs enregistrements

this.get('store').query('person', {
 filter: {
 name: 'Peter'
 }
}).then(function(peters) {
 // Do something with `peters`

Last update: 2019/08/31 14:21 richclient:emberjs:data:crud http://slamwiki2.kobject.net/richclient/emberjs/data/crud

http://slamwiki2.kobject.net/ Printed on 2026/01/29 08:10

});

D'un seul enregistrement

this.get('store').queryRecord('person', {
 filter: {
 id: 1234
 }
}).then(function(user) {
 // Do something with `user`
});

Create

Toutes les opérations de modification (ajout, modification, suppression) fonctionnent en 2 étapes :

Réalisation de la modification (appel de createRecord, deleteRecord, updateRecord…)
Mise à jour sur le serveur (save)

Création d'une instance

let post = store.createRecord('post', {
 title: 'Rails is Omakase',
 body: 'Lorem ipsum'
});

Mise à jour de la création (persistance) :

post.save();

Update

Mise à jour de l'instance avec setter et persistance :

this.get('store').findRecord('person', 1).then(function(tyrion) {
 // ...after the record has loaded
 tyrion.set('firstName', 'Yollo');
 tyrion.save();
});

Delete

Suppression d'une instance et persistance :

2026/01/29 08:10 3/5 Opérations CRUD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 post.deleteRecord();
 post.get('isDeleted'); // => true
 post.save(); // => DELETE to /posts/1

Il est possible d'utiliser destroyRecord pour effectuer directement la suppression :

 post.destroyRecord();

Flags, dirty attributes et annulation

Tant que la méthode save n'est pas appelée, la persistance n'est pas réalisée, et les instances modifiées
portent les flags mentionnant leurs modifications :

isDirty
isDeleted
isNew

person.get('isAdmin'); // => false
person.get('hasDirtyAttributes'); // => false
person.set('isAdmin', true);
person.get('hasDirtyAttributes'); // => true
person.changedAttributes(); // => { isAdmin: [false, true] }

Il est possible d'annuler les modifications avec rollbackAttributes tant que l'appel de la méthode save n'a pas
été effectué.

person.get('hasDirtyAttributes'); // => true
person.changedAttributes(); // => { isAdmin: [false, true] }

person.rollbackAttributes();

person.get('hasDirtyAttributes'); // => false
person.get('isAdmin'); // => false
person.changedAttributes(); // => {}

Erreurs de validation

Côté router, il est possible d'utiliser le error hook pour intercepter les erreurs de chargement/mise à jour,

import Route from '@ember/routing/route';

export default Route.extend({
 model(params) {
 return this.get('store').findAll('privileged-model');
 },

Last update: 2019/08/31 14:21 richclient:emberjs:data:crud http://slamwiki2.kobject.net/richclient/emberjs/data/crud

http://slamwiki2.kobject.net/ Printed on 2026/01/29 08:10

 actions: {
 error(error, transition) {
 if (error.status === '403') {
 this.replaceWith('login');
 } else {
 // Let the route above this handle the error.
 return true;
 }
 }
 }
});

Si le serveur retourne des erreurs de validation au moment du save, la propriété errors du model permet de les
afficher :

{{#each post.errors.title as |error|}}
 <div class="error">{{error.message}}</div>
{{/each}}
{{#each post.errors.body as |error|}}
 <div class="error">{{error.message}}</div>
{{/each}}

Il existe également un loading event permettant d'intervenir sur le chargement :

import Route from '@ember/routing/route';

export default Route.extend({
 ...
 actions: {
 loading(transition) {
 let start = new Date();
 transition.promise.finally(() => {
 this.get('notifier').notify(`Took ${new Date() - start}ms to load`);
 });

 return true;
 }
 }
});

Promises

Toutes les méthodes du store interrogeant le serveur (find, findAll, query, save…) retournent une “promise”
permettant d'intercepter la fin du chargement, ou les erreurs éventuelles.

let persons=this.get('store').findAll('person').then(function(datas){
 //les données datas sont chargées
 }).catch(function(reason){

2026/01/29 08:10 5/5 Opérations CRUD

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 //Erreurs de chargement
 });

let post = store.createRecord('post', {
 title: 'Rails is Omakase',
 body: 'Lorem ipsum'
});

let self = this;

function transitionToPost(post) {
 self.transitionToRoute('posts.show', post);
}

function failure(reason) {
 // handle the error
}

post.save().then(transitionToPost).catch(failure);

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/richclient/emberjs/data/crud

Last update: 2019/08/31 14:21

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/richclient/emberjs/data/crud

	Opérations CRUD
	Store
	Read : chargement d'enregistrements
	1 enregistrement
	Plusieurs enregistrements
	Recherche par critères

	Create
	Update
	Delete
	Flags, dirty attributes et annulation
	Erreurs de validation
	Promises

