
2026/01/30 11:38 1/3 Model objet

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Model objet

Les objets Javascript ne supportant pas l'observation des changements de leurs propriétés, une application
Ember utilisera des objets Ember.Object pour mettre en place le binding des propriétés en lieu et place des
objets javascript standards.

De la même façon, Ember étend l'objet Array javascript par la classe Ember.Enumerable.

Création de classes

La création de classe se fait en utilisant la méthode extend sur la classe Ember.Object :

import EmberObject from '@ember/object';

const Person = EmberObject.extend({
 say(thing) {
 alert(thing);
 }
});

Instanciation

L'instanciation d'un objet se fait par appel de la méthode create sur la classe.

let person = Person.create();
person.say('Hello'); // alerts " says: Hello"

La méthode create accepte en paramètre un objet js permettant d'initialiser/créer des membres :

import EmberObject from '@ember/object';

const Person = EmberObject.extend({
 helloWorld() {
 alert(`Hi, my name is ${this.get('name')}`);
 }
});

let tom = Person.create({
 name: 'Tom Dale'
});

tom.helloWorld(); // alerts "Hi, my name is Tom Dale"

https://www.emberjs.com/api/ember/2.16/modules/@ember%2Fobject
http://emberjs.com/api/classes/Ember.Enumerable.html

Last update: 2019/08/31 14:21 richclient:emberjs:modelobjet http://slamwiki2.kobject.net/richclient/emberjs/modelobjet

http://slamwiki2.kobject.net/ Printed on 2026/01/30 11:38

Héritage/surdéfinition

L'héritage est mis en place grace à la méthode extend()
La surdéfinition par l'appel de _super()

import EmberObject from '@ember/object';

const Person = EmberObject.extend({
 say(thing) {
 alert(`${this.get('name')} says: ${thing}`);
 }
});

const Soldier = Person.extend({
 say(thing) {
 // this will call the method in the parent class (Person#say), appending
 // the string ', sir!' to the variable `thing` passed in
 this._super(`${thing}, sir!`);
 }
});

let yehuda = Soldier.create({
 name: 'Yehuda Katz'
});

yehuda.say('Yes'); // alerts "Yehuda Katz says: Yes, sir!"

Initialisation/construction

Quand un objet est instancié, la méthode init() de sa classe est invoquée automatiquement.

import EmberObject from '@ember/object';

const Person = EmberObject.extend({
 init() {
 alert(`${this.get('name')}, reporting for duty!`);
 }
});

Person.create({
 name: 'Stefan Penner'
});

// alerts "Stefan Penner, reporting for duty!"

La méthode init permet d'initialiser chaque instance.

2026/01/30 11:38 3/3 Model objet

SlamWiki 2.1 - http://slamwiki2.kobject.net/

getters/setters

L'accès aux propriétés d'un objet doit se faire en passant par les accesseurs get() et set(), faute de quoi
computed properties et observers ne sont pas sollicités et ne mettent pas à jour les données (dans un template
par exemple)

import EmberObject from '@ember/object';

const Person = EmberObject.extend({
 name: 'Robert Jackson'
});

let person = Person.create();

person.get('name'); // 'Robert Jackson'
person.set('name', 'Tobias Fünke');
person.get('name'); // 'Tobias Fünke'

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/richclient/emberjs/modelobjet

Last update: 2019/08/31 14:21

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/richclient/emberjs/modelobjet

	Model objet
	Création de classes
	Instanciation
	Héritage/surdéfinition
	Initialisation/construction
	getters/setters

