2026/02/14 07:59 1/4 Evaluation Technique Spring Boot - 1h30

Evaluation Technique Spring Boot - 1h30

Systeme de commentaires et notations pour les profils

Contexte

Les utilisateurs du Portfolio-builder souhaitent pouvoir recevoir des retours constructifs sur leurs profils de la
part de visiteurs ou recruteurs. Vous allez implémenter un systeme de commentaires avec notation par
catégories (présentation, contenu, design).

Modele de données

Diagramme PlantUML

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2025/12/01 01:38 sio:bloc2:2a:td4 http://slamwiki2.kobject.net/sio/bloc2/2a/td4?rev=1764549487

@ Profile

o id: Long
o username: String
a...

VY receives
0 %

@ Comment

o id: Long
o content: String
o authorName: String Un commentaire peut avoir

o authorEmail: String 1 a 3 ratings (un par catégorie)

o createdAt: LocalDateTime
o status: CommentStatus

o getAverageScore(): Double

» contains
1..3

@ Rating @CommentStatus

o id: Long score doit étre compris PENDING
o score: Integer entre 1 et5 APPROVED

o category: RatingCategory REJECTED

@ RatingCategory

PRESENTATION
CONTENT
DESIGN

Travail demandé

Partie 1 : Modele de données (30 min)

1. Créer I'enum CommentStatus

¢ Valeurs : PENDING, APPROVED, REJECTED
2. Créer I'enum RatingCategory

¢ Valeurs : PRESENTATION, CONTENT, DESIGN
3. Créer l'entité Comment
Attributs :

e id: identifiant auto-généré

http://slamwiki2.kobject.net/ Printed on 2026/02/14 07:59



2026/02/14 07:59 3/4

Evaluation Technique Spring Boot - 1h30

e content : texte de 500 caracteres maximum, obligatoire
authorName : nom du commentateur, obligatoire
authorEmail : email du commentateur, obligatoire
createdAt : date/heure de création

e status : statut du commentaire (enum)

Relations :

* un commentaire appartient a un profil
e un commentaire a plusieurs notes
¢ les ratings ne peuvent pas exister sans commentaire

4. Créer l'entité Rating
Attributs :
e id:identifiant auto-généré
e score : note de 1 a 5, obligatoire
e category : catégorie de notation (enum)

Relations :

¢ une note appartient a un commentaire

Partie 2 : Repositories (10 min)

5. Créer CommentRepository

e Hérite de JpaRepository<Comment, Long>

e Méthode personnalisée : trouver les commentaires par ID de profil ET statut

6. Créer RatingRepository

e Hérite de JpaRepository<Rating, Long>

e Méthode personnalisée : trouver toutes les notes d'un commentaire

Partie 3 : DTOs (15 min)

7. Créer RatingDTO
Attributs :

e category
e score

Validations :

e category : non null
e score:entrelet5

8. Créer CreateCommentRequest
Attributs :

e content

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2025/12/01 01:38 sio:bloc2:2a:td4 http://slamwiki2.kobject.net/sio/bloc2/2a/td4?rev=1764549487

e authorName
e authorEmail
¢ ratings (liste de RatingDTO)

Validations :

e content : non vide, max 500 caracteres
authorName : non vide

authorEmail : format email valide
ratings : non vide

9. Créer CommentDTO
Attributs :

e id

e content

¢ authorName

e createdAt

e status

e ratings

e averageScore

Criteres d'évaluation

Critere Points
Entités : annotations JPA correctes, relations bidirectionnelles cohérentes|/4
Repositories : déclarations correctes avec méthodes personnalisées /3
DTOs : structure et validations appropriées /3

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/sio/bloc2/2a/td4?rev=1764549487

Last update: 2025/12/01 01:38

http://slamwiki2.kobject.net/ Printed on 2026/02/14 07:59


http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/sio/bloc2/2a/td4?rev=1764549487

	Évaluation Technique Spring Boot - 1h30
	Système de commentaires et notations pour les profils
	Contexte

	Modèle de données
	Diagramme PlantUML

	Travail demandé
	Partie 1 : Modèle de données (30 min)
	Partie 2 : Repositories (10 min)
	Partie 3 : DTOs (15 min)

	Critères d'évaluation


