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Systeme de commentaires et notations pour les profils

Contexte

Les utilisateurs du Portfolio-builder souhaitent pouvoir recevoir des retours constructifs sur leurs profils de la
part de visiteurs ou recruteurs. Vous allez implémenter un systeme de commentaires avec notation par
catégories (présentation, contenu, design).

Modele de données

Diagramme PlantUML
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@ Profile

o id: Long
o username: String
a...

VY receives
0 %

@ Comment

o id: Long
o content: String
o authorName: String Un commentaire peut avoir

o authorEmail: String 1 a 3 ratings (un par catégorie)

o createdAt: LocalDateTime
o status: CommentStatus

o getAverageScore(): Double

» contains
1..3

@ Rating @CommentStatus

o id: Long score doit étre compris PENDING
o score: Integer entre 1 et5 APPROVED

o category: RatingCategory REJECTED

@ RatingCategory

PRESENTATION
CONTENT
DESIGN

Travail demandé

Partie 1 : Modele de données (30 min)

1. Créer I'enum CommentStatus

¢ Valeurs : PENDING, APPROVED, REJECTED
2. Créer I'enum RatingCategory

¢ Valeurs : PRESENTATION, CONTENT, DESIGN
3. Créer l'entité Comment
Attributs :

e id: identifiant auto-généré
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e content : texte de 500 caracteres maximum, obligatoire
authorName : nom du commentateur, obligatoire
authorEmail : email du commentateur, obligatoire
createdAt : date/heure de création

e status : statut du commentaire (enum)

Relations :

* un commentaire appartient a un profil
e un commentaire a plusieurs notes
¢ les ratings ne peuvent pas exister sans commentaire

4. Créer l'entité Rating
Attributs :
e id:identifiant auto-généré
e score : note de 1 a 5, obligatoire
e category : catégorie de notation (enum)

Relations :

¢ une note appartient a un commentaire

Partie 2 : Repositories (10 min)

5. Créer CommentRepository

e Hérite de JpaRepository<Comment, Long>

e Méthode personnalisée : trouver les commentaires par ID de profil ET statut

6. Créer RatingRepository

e Hérite de JpaRepository<Rating, Long>

e Méthode personnalisée : trouver toutes les notes d'un commentaire

Partie 3 : DTOs (15 min)

7. Créer RatingDTO
Attributs :

e category
e score

Validations :

e category : non null
e score:entrelet5

8. Créer CreateCommentRequest
Attributs :

e content
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e authorName
e authorEmail
¢ ratings (liste de RatingDTO)

Validations :

e content : non vide, max 500 caracteres
authorName : non vide

authorEmail : format email valide
ratings : non vide

9. Créer CommentDTO
Attributs :

e id

e content

¢ authorName

e createdAt

e status

e ratings

e averageScore

Criteres d'évaluation

Critere Points
Entités : annotations JPA correctes, relations bidirectionnelles cohérentes|/4
Repositories : déclarations correctes avec méthodes personnalisées /3
DTOs : structure et validations appropriées /3
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