2026/02/17 12:38 1/11 Patrons de conception

Patrons de conception

Les patrons de conception (design patterns) apportent des solutions algorithmiques et d'implémentation aux
problémes courants rencontrés dans le cadre de la conception orientée objet.

Le Singleton (Singleton)

Problématique : Créer et avoir toujours a disposition une unigue instance d'une classe

Le pattern Singleton apporte une solution aux cas ol une unique instance d'une classe doit exister dans un
programme (pour une gestion d'un pool de connexions, une gestion du cache, une instance d'application...)

Diagramme de classes

Singleton

- instance: Singleton

- Singletoni()

+ getinstance():5ingleton

Implémentation en java

public final class Singleton {
private static Singleton instance;

private Singleton() {
// constructeur

}

public static Singleton getInstance() {
if (instance == null) {
synchronized (Singleton.class) {
instance = new Singleton();
}
¥

return instance;

}

@Override
public Object clone() throws CloneNotSupportedException {
throw new CloneNotSupportedException();
}
}

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://slamwiki2.kobject.net/_detail/slam4/poo/singleton.png?id=sio%3Abloc2%3Apoo%3Adesignpattern

Last update: 2024/09/03 11:06 sio:bloc2:poo:designpattern http://slamwiki2.kobject.net/sio/bloc2/poo/designpattern

Utilisation

Il est ensuite possible de faire appel a la méthode getinstance qui retournera toujours I'instance unique de
singleton.

Singleton.getInstance();

La Fabrique (Factory)

Problématique : Créer différents objets dont le type peut varier a I'exécution, en fonction du déroulement du
programme

Objectifs

La fabrique est une classe de création d'objets, de différents types, héritant d'une classe de base, ou
implémentant une interface. Elle permet la création d'objets dynamiquement en fonction de paramétres passés.

Caractéristiques

¢ La fabrique étant souvent unique dans le programme, elle peut utiliser le pattern Singleton
e Les parametres passés a la fabrique déterminent le type d'instance a créer

Diagramme de classes

FabriqueAnimal —
+ getAnimal():Animal Animal
L + myName{)
-“-L"eates_“ / K
h_--“:} Extends models Extends
Chat Chien
+ myName() + myName()

Implémentation en java

Les différents types a créer (héritant d'un type générique)

public abstract class Animal{
public abstract void myName();

}

http://slamwiki2.kobject.net/ Printed on 2026/02/17 12:38



http://slamwiki2.kobject.net/_detail/slam4/poo/factory.png?id=sio%3Abloc2%3Apoo%3Adesignpattern

2026/02/17 12:38 3/11 Patrons de conception

public class Chat extends Animal{
public void myName(){
System.out.println("Je suis un Chat");
}
}

public class Chien extends Animal{
public void myName () {
System.out.println("Je suis un Chien");

}

La fabrique :

public class FabriqueAnimal{

private static FabriqueAnimal instance = new FabriqueAnimal();
private FabriqueAnimal(){}

public static FabriqueAnimal getFabriqueAnimalInstance(){
return instance ;

}

public Animal getAnimal(String typeAnimal) throws ExceptionCreation{
Animal result=null;

switch(typeAnimal) {
case "chat":
result= new Chat();
break;

case "chien":
result=new Chien();
break;

default:
throw new ExceptionCreation("Impossible de créer un " +

typeAnimal) ;
break;
}

return result;

Utilisation :

public class DemoFabrique{
public static void main(String [] args){
FabrigqueAnimal fabrique = FabriqueAnimal.getFabriqueAnimalInstance();
Animal animal = FabriqueAnimal.getAnimal("chat");
animal.myName() ;

}

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2024/09/03 11:06 sio:bloc2:poo:designpattern http://slamwiki2.kobject.net/sio/bloc2/poo/designpattern

La Fabrique abstraite (Abstract Factory)

Problématique : Créer différents objets dont le type peut varier a I'exécution, en fonction du déroulement du
programme, dissocier création et utilisation pour permettre I'ajout de nouveaux objets, sans modifier le code du
programme utilisateur

Objectifs

La fabrique est un créateur d'objets, de différents types, héritant d'une classe de base, ou implémentant une
interface. Elle permet d'isoler la création des objets de leur utilisation.
On peut ainsi ajouter de nouveaux objets dérivés sans modifier le code qui utilise I'objet de base.

Implémentation en java

Les différents types d'objet a créer et leur classe de base :

public abstract class Button{
private String caption;
public abstract void paint();
public String getCaption(){
return caption;

}

public void setCaption(String caption){
this.caption = caption;
}
}

class WinButton extends Button{
public void paint(){
System.out.println("I'm a WinButton: "+ getCaption());
}
}

class 0SXButton extends Button{
public void paint(){
System.out.println("I'm a 0SXButton: "+ getCaption());
}

Les factories concretes et leur classe abstraite :

/*
* GUIFactory example
*/
public abstract class GUIFactory{
public static GUIFactory getFactory(){

http://slamwiki2.kobject.net/ Printed on 2026/02/17 12:38



2026/02/17 12:38 5/11

Patrons de conception

int sys = readFromConfigFile("0S TYPE");
if (sys == 0)
return(new WinFactory());
else
return(new 0SXFactory());
}

public abstract Button createButton();

}

class WinFactory extends GUIFactory{
public Button createButton(){
return(new WinButton());
}
}

class 0SXFactory extends GUIFactory{
public Button createButton(){
return(new 0SXButton());

}

Utilisation :

public class DemoAbstractFactory{
public static void main(String[] args){

GUIFactory aFactory = GUIFactory.getFactory();
Button aButton = aFactory.createButton();

aButton.setCaption("Jouer");
aButton.paint();

Limites

« Introduit une certaine complexité dans le développement, parfois a éviter

Le poids mouche (Flyweight)

Problématique : Eviter de créer un trop grand nombre d'instances d'une classe ayant des propriétés

intrinseques

Le poids mouche permet de factoriser le nombre d'instances a créer d'une classe, en permettant la réutilisation

d'instance existantes

Diagramme de classes

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2024/09/03 11:06

sio:bloc2:poo:designpattern http://slamwiki2.kobject.net/sio/bloc2/poo/designpattern

PoidsMoucheAbstrait
FabriqueDePoidsMouche
) : + operation(etatExtrinseque)
"'AL + getPoidsMouchelkey): PoidsMouche O—Jﬁ [ .
] return £>
; ~ Extends
z 5i poidsMouche(key) existe {
U ' retourner poidsMouche existant
,SE }sinon{
] Créer un nouveau poidsiouche PoidsMouche
! I'ajouter a la collection des poidsMouches
! retourner nouveau poidsMouche - etatintrinseque
; }
» _.-:}7 + operation|etatExtrinseque)
Client PP

Implémentation en java

Source : http://www.journaldev.com/1562/flyweight-pattern-in-java-example-tutorial

Création de formes (Shape), de types concrets (Line, oval...)

Models

package models;

import java.awt.Color;
import java.awt.Graphics;

public interface Shape {

public void draw(Graphics g, int x, int y, int width,

package models;

import java.awt.Color;
import java.awt.Graphics;

public class Line implements Shape {
@Override
public void draw(Graphics g, int x, int y, int width,
g.setColor(color);
g.drawLine(x, y, width, height);

int height, Color color);

int height, Color color)

http://slamwiki2.kobject.net/

Printed on 2026/02/17 12:38


http://slamwiki2.kobject.net/_detail/slam4/poo/flyweight.png?id=sio%3Abloc2%3Apoo%3Adesignpattern
http://www.journaldev.com/1562/flyweight-pattern-in-java-example-tutorial

2026/02/17 12:38 7/11 Patrons de conception

package models;

import java.awt.Color;
import java.awt.Graphics;

public class Oval implements Shape {
private boolean fill;

public Oval(boolean fill) {
this.fill = fill;

¥
@Override
public void draw(Graphics g, int x, int y, int width, int height, Color color)
{
g.setColor(color);
g.drawOval(x, y, width, height);
if (fill) {
g.filloval(x, y, width, height);
}
}
}
Factory

package models;
import java.util.HashMap;
public class ShapeFactory {

private static final HashMap<ShapeType, Shape> shapes = new HashMap<ShapeType,
Shape>() ;

public static Shape getShape(ShapeType type) {
Shape shapelImpl = shapes.get(type);

if (shapeImpl == null) {
switch (type) {
case OVAL FILL:
shapeImpl
break;
case OVAL:
shapeImpl
break;
case LINE:
shapeImpl
break;

new Oval(true);

new Oval(false);

new Line();

}
shapes.put(type, shapelmpl);
}

return shapelmpl;

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2024/09/03 11:06 sio:bloc2:poo:designpattern http://slamwiki2.kobject.net/sio/bloc2/poo/designpattern

}

public static enum ShapeType {
OVAL FILL, OVAL, LINE;

}

Utilisation

public class DemoFlyweight extends JFrame {

private static final long serialVersionUID = -1350200437285282550L;
private final int WIDTH;
private final int HEIGHT;

private static final ShapeType shapes[] = { ShapeType.LINE,
ShapeType.OVAL FILL, ShapeType.OVAL };
private static final Color colors[] = { Color.RED, Color.GREEN, Color.YELLOW };

public DemoFlyweight(int width, int height) {
this.WIDTH = width;
this.HEIGHT = height;
Container contentPane = getContentPane();

JButton startButton = new JButton("Draw");
final JPanel panel = new JPanel();

contentPane.add(panel, BorderLayout.CENTER);
contentPane.add(startButton, BorderLayout.SOUTH);
setSize(WIDTH, HEIGHT);
setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
setVisible(true);

startButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
Graphics g = panel.getGraphics();
for (int i = 0; i < 40; ++i) {
Shape shape = ShapeFactory.getShape(getRandomShape());
shape.draw(g, getRandomX(), getRandomY(), getRandomWidth(),
getRandomHeight (), getRandomColor());
}
}
1)
}

private ShapeType getRandomShape() {
return shapes[(int) (Math.random() * shapes.length)];
}

private int getRandomX() {
return (int) (Math.random() * WIDTH);
}

http://slamwiki2.kobject.net/ Printed on 2026/02/17 12:38



2026/02/17 12:38 9/11 Patrons de conception

private int getRandomY() {
return (int) (Math.random() * HEIGHT);
}

private int getRandomWidth() {
return (int) (Math.random() * (WIDTH / 10));
}

private int getRandomHeight() {
return (int) (Math.random() * (HEIGHT / 10));
}

private Color getRandomColor() {
return colors[(int) (Math.random() * colors.length)];

}

public static void main(String[] args) {
new DemoFlyweight (500, 600);
}

MVC 2

MVC2 est un patron de conception dont la volonté est de séparer les données, les traitements et la
présentation. MVC2 permet de segmenter une application en trois composants essentiels :

e Le modele
e Le contréleur
e Les vues

MVC2 est une variante de MVC, dans laquelle le controleur est unique (contrairement a MVC ou le réle du
contréleur est assuré par plusieurs éléments).

Nombre de frameworks permettent une implémentation de MVC ou MVC2 facilitée.

Le Modele

Le modeéle correspond aux classes et objets métiers. Le modele est responsable de la gestion de ces données,
et en assure l'intégrité. Il ne doit faire aucune référence aux vues, pas plus gu'au contrdleur.

Le controleur

Le contréleur synchronise (via éveénements) les vues et le modele. Il est responsable de la logique applicative.
Le controleur n'effectue aucun traitement, mais se contente de solliciter le modele adéquat, ou d'afficher la vue
correspondante.

Les vues

Les vues correspondent a I'lHM, elles affichent les résultats fournis par le modéle, en réponse aux actions de
I'utilisateur.

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2024/09/03 11:06 sio:bloc2:poo:designpattern http://slamwiki2.kobject.net/sio/bloc2/poo/designpattern

Voir MVC expliqgué a mam

Injection de dépendance (dependency injection)

Problématique : Eviter une dépendance directe entre deux classes, en définissant dynamiquement la
dépendance plut6t que statiquement.

Une classe A dépend d'une autre classe B quand la classe A posséde un attribut de type B, ou posséde une
méthode utilisant la classe B (type de parameétre, valeur de retour, variable locale, appel de méthode de la
classe B).

Pour mettre en ceuvre l'injection de dépendance :

Créer une interface | déclarant les méthodes de la classe B utilisées par la classe A ;

public interface I{
public void doSomething();
}

Déclarer la classe B comme implémentation de cette interface | ;

public class B implements I{
public void doSomething(){
system.out.println("something done !");

Remplacer toute référence a la classe B par des références a l'interface | ; Si la classe A instancie des instances
de B a son initialisation, alors remplacer l'instanciation par un passage d'une instance de l'interface | au(x)
constructeur(s) de A ; Si besoin, ajouter une méthode pour spécifier I'instance de l'interface | a utiliser.

public class A{
private I injected;
public A(I injected){
this.injected=injected;

}

Observer/observable

Le design pattern Obserser en java

Delayed Queue

Permet de gérer une liste d'éléments en sortie FIFO avec délai.

http://slamwiki2.kobject.net/ Printed on 2026/02/17 12:38


http://www.do-as-i-say.com/notes/2009/08/framework-symfony-explique-a-ma-maman-1/
http://slamwiki2.kobject.net/slam4/poo/designpattern/observer

2026/02/17 12:38 11/11

Patrons de conception

¢ java DelayQueue API
e Code geeks example

Task

- stardTime :long
- operation @ SaveOperation
==Constructor=> Task(Save(Operation operation,

4

SaveOperation

{abstract}

datas :Object]

-
+
+
+

<<Constructor>> SaveOperation (Object.. datas)

getDatas ()

setDatas (Object datas(])

toString ()

: Object]
vioid
: String

long delay) aperation
+ getDelay (Timealnit wnit) -long
- compareTo (Delayed o) simt
- call { : Object
+ tostnng () : Slring
M a.r i
tasks e
kY
<<|nterface non résolug==
L= Delayed
{concurrent)
#]
1.1
TaskQueue
- tasks : DelayQueus<Task
- fthread : Thread
- hame String
- webGate @ WebGate
+ ==Constructor=> TaskCQueue (String name, WebGate webGate)
+ put (Task task) - woid
* update (Object o, Object id) - woid
+ stan () void
+ stop () woid
Vé V
Réferences
¢ Design patterns (TutorialsPoint)
e Patrons de conception (wikiBooks)
From:

http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/sio/bloc2/poo/designpattern

Last update: 2024/09/03 11:06

o EEEEEEEE

o Callable_Object

I
s qbi}qd.:-.:-
L

o~ Callable
(concurrent)

(7

SlamWiki 2.1 - http://slamwiki2.kobject.net/


https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/DelayQueue.html
https://examples.javacodegeeks.com/core-java/util/concurrent/delayqueue/java-util-concurrent-delayqueue-example/
http://slamwiki2.kobject.net/_detail/slam4/poo/delayedqueue.png?id=sio%3Abloc2%3Apoo%3Adesignpattern
http://www.tutorialspoint.com/design_pattern/flyweight_pattern.htm
https://fr.wikibooks.org/wiki/Patrons_de_conception
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/sio/bloc2/poo/designpattern

	Patrons de conception
	Le Singleton (Singleton)
	Diagramme de classes
	Implémentation en java
	Utilisation

	La Fabrique (Factory)
	Objectifs
	Caractéristiques
	Diagramme de classes
	Implémentation en java

	La Fabrique abstraite (Abstract Factory)
	Objectifs
	Implémentation en java
	Utilisation :

	Limites

	Le poids mouche (Flyweight)
	Diagramme de classes
	Implémentation en java
	Models
	Factory
	Utilisation


	MVC 2
	Le Modèle
	Le contrôleur
	Les vues

	Injection de dépendance (dependency injection)
	Observer/observable
	Delayed Queue
	Références


