
2026/02/14 05:42 1/7 Accès à une API Rest en java

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Accès à une API Rest en java

-- Ressources

Nous avons besoin d'une librairie pour lire du JSON et le convertir en objet Java, et inversement :

Google GSON

Nous avons également besoin d'effectuer des requêtes (GET, POST, PUT, DELETE…) vers le server Http exposant
l'api Rest :

Apache Http components

-- JSON

-- Modèle

Créer une classe Model qui nous servira de classe métier :

Générer
le constructeur par défaut
les accesseurs
la méthode toString

public class Model {
 private int id;
 private String name;
 private boolean access;
 private Date date;
 public Model() {
 }
 public int getId() {
 return id;
 }
 public void setId(int id) {
 this.id = id;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public boolean isAccess() {
 return access;
 }
 public void setAccess(boolean access) {
 this.access = access;
 }
 public Date getDate() {

http://mvnrepository.com/artifact/com.google.code.gson/gson/2.3.1
https://hc.apache.org/downloads.cgi

Last update: 2019/08/31 14:21 slam4:gui:rest http://slamwiki2.kobject.net/slam4/gui/rest

http://slamwiki2.kobject.net/ Printed on 2026/02/14 05:42

 return date;
 }
 public void setDate(Date date) {
 this.date = date;
 }

 @Override
 public String toString() {
 return "Model [id=" + id + ", name=" + name + ", access=" + access
 + ", date=" + date + "]";
 }
}

-- Classe de test

Créer une classe de test qui va nous permettre de tester GSON :

L'objet Gson instancié dans le constructeur nous permettra d'effectuer la conversion dans les 2 sens :

public class TestJSON {
 private Gson gson;
 public TestJSON() {
 gson = new GsonBuilder()
 .setDateFormat("yyyy-MM-dd HH:mm:ss")
 .create();
 }
}

-- De JSON au model

Créer la méthode suivante retournant une instance de Model construite à partir d'une chaîne JSON :

 ...
 public Model jsonToModel(String jsonString){
 return gson.fromJson(jsonString, Model.class);
 }
...

Ajouter la méthode Main dans la classe pour la tester :

 ...
 public static void main(String args[]){
 TestJSON jsonTest=new TestJSON();
 String jsonStr="{id:1,name:'nom',access:true,date:'2015-03-15 19:22:00'}";
 Model m=jsonTest.jsonToModel(jsonStr);
 System.out.println(m);
 }
...

2026/02/14 05:42 3/7 Accès à une API Rest en java

SlamWiki 2.1 - http://slamwiki2.kobject.net/

L'exécution doit retourner :

Model [id=1, name=nom, access=true, date=Sun Mar 15 19:22:00 CET 2015]

-- Du model à JSON

Ajouter la méthode suivante retournant une chaîne JSON construite à partir d'une instance de la classe Model :

 ...
 public String modelToJson(Model m){
 return gson.toJson(m).toString();
 }
...

Ajouter dans la méthode Main le code suivant :

 ...
 public static void main(String args[]){
 TestJSON jsonTest=new TestJSON();
 String jsonStr="{id:1,name:'nom',access:true,date:'2015-03-15 19:22:00'}";
 Model m=jsonTest.jsonToModel(jsonStr);
 System.out.println(m);
 m.setName("Autre nom");
 System.out.println(jsonTest.modelToJson(m));
 }
...

L'exécution doit retourner :

Model [id=1, name=nom, access=true, date=Sun Mar 15 19:22:00 CET 2015]
{"id":1,"name":"Autre nom","access":true,"date":"2015-03-15 19:22:00"}

-- Http requests

Pour mettre en oeuvre les tests, vous devez disposer d'un serveur HTTP hébergeant un service Rest.

-- GET

Créer une classe TestHttp, instanciant un objet Gson qui nous servira pour les conversions JSON⇔Objet Java :

public class TestHttp {
 private Gson gson;
 public TestHttp() {
 gson = new GsonBuilder()
 .setDateFormat("yyyy-MM-dd HH:mm:ss")

Last update: 2019/08/31 14:21 slam4:gui:rest http://slamwiki2.kobject.net/slam4/gui/rest

http://slamwiki2.kobject.net/ Printed on 2026/02/14 05:42

 .create();
 }
}

Implémmenter la méthode getHttp :

 ...
 public String getHTML(String urlToRead) throws ClientProtocolException,
IOException {
 String result="";
 CloseableHttpClient httpClient = HttpClients.createDefault();
 try {
 HttpGet getRequest = new HttpGet(urlToRead);
 ResponseHandler<String> responseHandler = new BasicResponseHandler();
 result = httpClient.execute(getRequest, responseHandler);
 }finally {
 httpClient.close();;
 }
 return result;
 }
 ...

Ajouter la méthode main dans la classe pour tester le Get, n'oubliez pas de démarrer le serveur :

 ...
 public static void main(String args[]) {
 TestHttp test = new TestHttp();

 try {
 String result = test.getHTML("http://127.0.0.1/[restServer]");
 System.out.println(result);

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 ...

-- POST

Implémmenter la méthode restPostJSON :

 ...
 public String restPostJSON(String urlToRead, Object o) throws
ClientProtocolException, IOException {
 String result = "";
 CloseableHttpClient httpClient = HttpClients.createDefault();
 try {
 HttpPost postRequest = new HttpPost(urlToRead);
 postRequest.setHeader("content-type", "application/json");

2026/02/14 05:42 5/7 Accès à une API Rest en java

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 postRequest.setHeader("Accept", "application/json");
 String jsonString = gson.toJson(o);
 StringEntity params = new StringEntity(jsonString);
 params.setContentType("application/json");
 params.setContentEncoding("UTF-8");
 postRequest.setEntity(params);
 ResponseHandler<String> responseHandler = new BasicResponseHandler();
 result = httpClient.execute(postRequest, responseHandler);
 } finally {
 httpClient.close();
 }
 return result;
 }
 ...

Modifier la méthode main de la classe pour tester le restPostJSON :

 ...
 public static void main(String args[]) {
 TestHttp test = new TestHttp();

 try {
 ...
 System.out.println(test.restPostJSON(
 "http://127.0.0.1/[restServer]/mondes", new Monde("Nouveau")));

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 ...

-- POST Classique

Le post classique est légèrement plus complexe, puisqu'il nécessite :

La conversion en JsonObject de l'objet à poster
L'envoi dans l'en-tête HTTP des couples nomDeMembre/valeur de l'objet
La définition du content-type de la requête : “application/x-www-form-urlencoded”

Implémmenter la méthode postJSON :

 ...
 public String postJSON(String urlToRead, Object o)
 throws ClientProtocolException, IOException {
 String result = "";
 CloseableHttpClient httpClient = HttpClients.createDefault();
 try {
 HttpPost postRequest = new HttpPost(urlToRead);
 postRequest.setHeader("content-type","application/x-www-form-
urlencoded");

Last update: 2019/08/31 14:21 slam4:gui:rest http://slamwiki2.kobject.net/slam4/gui/rest

http://slamwiki2.kobject.net/ Printed on 2026/02/14 05:42

 List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>();
 JsonElement elm = gson.toJsonTree(o);
 JsonObject jsonObj = elm.getAsJsonObject();
 for (Map.Entry<String, JsonElement> entry : jsonObj.entrySet()) {
 nameValuePairs.add(new BasicNameValuePair(entry.getKey(), entry
 .getValue().getAsString()));
 }
 postRequest.setEntity(new UrlEncodedFormEntity(nameValuePairs));
 ResponseHandler<String> responseHandler = new BasicResponseHandler();
 result = httpClient.execute(postRequest, responseHandler);
 } finally {
 httpClient.close();
 ;
 }
 return result;
 }
 ...

Modifier la méthode main de la classe pour tester le POST classique, il s'agit ici d'un exemple avec une classe
User :

 ...
 public static void main(String args[]) {
 TestHttp test = new TestHttp();

 try {
 String result = test.getHTML("http://127.0.0.1/[restServer]");
 System.out.println(result);

 System.out.println(test.postJSON(
 "http://127.0.0.1/[restServer]/user/connect", new User(
 "admin@local.fr", "0000")));

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 ...

-- Session

Pour conserver la session, on instancie un HttpContext, qui sera passé à toutes les requêtes.

 private HttpContext httpContext;
 private CloseableHttpClient httpClient;
 private CookieStore cookieStore;

 protected void createCookieStore() {
 httpClient = HttpClients.createDefault();

2026/02/14 05:42 7/7 Accès à une API Rest en java

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 cookieStore = new BasicCookieStore();
 httpContext = new BasicHttpContext();
 httpContext.setAttribute(HttpClientContext.COOKIE_STORE, cookieStore);
 }

 public TestHttp() {
 gson = new GsonBuilder().setDateFormat("yyyy-MM-dd HH:mm:ss").create();
 createCookieStore();
 }

Utilisation et passage du HttpContext :

 result = httpClient.execute(getRequest, responseHandler, httpContext);
 ...
 result = httpClient.execute(postRequest, responseHandler, httpContext);

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/gui/rest

Last update: 2019/08/31 14:21

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/gui/rest

	Accès à une API Rest en java
	-- Ressources
	-- JSON
	-- Modèle
	-- Classe de test
	-- De JSON au model
	-- Du model à JSON

	-- Http requests
	-- GET
	-- POST

	-- POST Classique
	-- Session

