2026/02/04 08:14 1/6 Accés a une API Rest en java

Acces a une API Rest en java

-- Ressources

Nous avons besoin d'une librairie pour lire du JSON et le convertir en objet Java, et inversement :
¢ Google GSON

Nous avons également besoin d'effectuer des requétes (GET, POST, PUT, DELETE...) vers le server Http exposant
I'api Rest :

¢ Apache Http components

-- JSON

-- Modele

Créer une classe Model qui nous servira de classe métier :

o Générer
o le constructeur par défaut
o les accesseurs
o la méthode toString

public class Model {

private int id;

private String name;

private boolean access;

private Date date;

public Model() {

}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public boolean isAccess() {
return access;

}

public void setAccess(boolean access) {
this.access = access;

}
public Date getDate() {

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://mvnrepository.com/artifact/com.google.code.gson/gson/2.3.1
https://hc.apache.org/downloads.cgi

Last update: 2019/08/31 14:39 slam4:gui:rest http://slamwiki2.kobject.net/slam4/qui/rest?rev=1426533627

return date;

}

public void setDate(Date date) {
this.date = date;

}
@Override
public String toString() {
return "Model [id=" + id + ", name=" + name + ", access=" + access
+ ", date=" + date + "]1";
}

-- Classe de test

Créer une classe de test qui va nous permettre de tester GSON :

L'objet Gson instancié dans le constructeur nous permettra d'effectuer la conversion dans les 2 sens :

public class TestJSON {
private Gson gson;
public TestJSON() {
gson = new GsonBuilder()
.setDateFormat("yyyy-MM-dd HH:mm:ss")
.create();

-- De JSON au model

Créer la méthode suivante retournant une instance de Model construite a partir d'une chaine JSON :

public Model jsonToModel(String jsonString){
return gson.fromJson(jsonString, Model.class);

}

Ajouter la méthode Main dans la classe pour la tester :

public static void main(String args[]){
TestJSON jsonTest=new TestJSON();
String jsonStr="{id:1,name: 'nom',access:true,date:'2015-03-15 19:22:00'}";
Model m=jsonTest.jsonToModel(jsonStr);
System.out.println(m);

http://slamwiki2.kobject.net/ Printed on 2026/02/04 08:14



2026/02/04 08:14 3/6 Accés a une API Rest en java

L'exécution doit retourner :

Model [id=1, name=nom, access=true, date=Sun Mar 15 19:22:00 CET 2015]
-- Du model a JSON

Ajouter la méthode suivante retournant une chaine JSON construite a partir d'une instance de la classe Model :

public String modelToJson(Model m){
return gson.toJson(m).toString();

}

Ajouter dans la méthode Main le code suivant :

public static void main(String args[]){
TestJSON jsonTest=new TestJSON();
String jsonStr="{id:1,name: 'nom',access:true,date:'2015-03-15 19:22:00'}";
Model m=jsonTest.jsonToModel(jsonStr);
System.out.println(m);
m.setName("Autre nom");
System.out.println(jsonTest.modelToJson(m));

L'exécution doit retourner :

Model [id=1, name=nom, access=true, date=Sun Mar 15 19:22:00 CET 2015]
{"id":1, "name" :"Autre nom","access":true, "date":"2015-03-15 19:22:00"}

-- Http requests
Pour mettre en oeuvre les tests, vous devez disposer d'un serveur HTTP hébergeant un service Rest.

-- GET

Créer une classe TestHttp, instanciant un objet Gson qui nous servira pour les conversions JSONeObjet Java :

public class TestHttp {
private Gson gson;
public TestHttp() {
gson = new GsonBuilder()
.setDateFormat("yyyy-MM-dd HH:mm:ss")

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2019/08/31 14:39 slam4:gui:rest http://slamwiki2.kobject.net/slam4/qui/rest?rev=1426533627

.create();

Implémmenter la méthode getHttp :

public String getHTML(String urlToRead) throws ClientProtocolException,
I0Exception {

String result="";
CloseableHttpClient httpClient = HttpClients.createDefault();
try {
HttpGet getRequest = new HttpGet(urlToRead);
ResponseHandler<String> responseHandler = new BasicResponseHandler();
result = httpClient.execute(getRequest, responseHandler);
}finally {
httpClient.close();;
}

return result;

Ajouter la méthode main dans la classe pour tester le Get, n'oubliez pas de démarrer le serveur :

public static void main(String args[]) {
TestHttp test = new TestHttp();

try {
String result = test.getHTML("http://127.0.0.1/[restServer]");
System.out.println(result);

} catch (IOException e) {
e.printStackTrace();

}

-- POST

Implémmenter la méthode restPostJSON :

public String restPostJSON(String urlToRead, Object o) throws
ClientProtocolException, IOException {
String result = "";

CloseableHttpClient httpClient = HttpClients.createDefault();

try {
HttpPost postRequest = new HttpPost(urlToRead);
postRequest.setHeader("content-type", "application/json");

http://slamwiki2.kobject.net/ Printed on 2026/02/04 08:14



2026/02/04 08:14 5/6 Accés a une API Rest en java

postRequest.setHeader("Accept", "application/json");
String jsonString = gson.toJson(o);

StringEntity params = new StringEntity(jsonString);
params.setContentType("application/json");
params.setContentEncoding("UTF-8");
postRequest.setEntity(params);

ResponseHandler<String> responseHandler = new BasicResponseHandler();

result = httpClient.execute(postRequest, responseHandler);
} finally {

httpClient.close();
}

return result;

Modifier la méthode main de la classe pour tester le restPost)SON :

public static void main(String args[]) {
TestHttp test = new TestHttp();

try {

System.out.println(test.restPostJSON(

"http://127.0.0.1/[restServer]/mondes", new Monde("Nouveau")));

} catch (IOException e) {
e.printStackTrace();

}

-- POST Classique

Le post classique est |[égerement plus complexe, puisqu'il nécessite :

e La conversion en JsonObject de I'objet a poster
e L'envoi dans I'en-téte HTTP des couples nomDeMembre/valeur de |'objet
¢ La définition du content-type de la requéte : “application/x-www-form-urlencoded”

Implémmenter la méthode postJSON :

public String postJSON(String urlToRead, Object o)

throws ClientProtocolException, IOException {

String result = "";

CloseableHttpClient httpClient = HttpClients.createDefault();

try {
HttpPost postRequest = new HttpPost(urlToRead);
postRequest.setHeader("content-type", "application/x-www-form-

urlencoded");

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2019/08/31 14:39 slam4:gui:rest http://slamwiki2.kobject.net/slam4/qui/rest?rev=1426533627

List<NameValuePair> nameValuePairs = new ArraylList<NameValuePair>();

JsonElement elm = gson.toJsonTree(o);

JsonObject jsonObj = elm.getAsJsonObject();

for (Map.Entry<String, JsonElement> entry : jsonObj.entrySet()) {
nameValuePairs.add(new BasicNameValuePair(entry.getKey(), entry

.getValue().getAsString()));

}

postRequest.setEntity(new UrlEncodedFormEntity(nameValuePairs));

ResponseHandler<String> responseHandler = new BasicResponseHandler();

result = httpClient.execute(postRequest, responseHandler);

} finally {
httpClient.close();

’

}

return result;

Modifier la méthode main de la classe pour tester le POST classique, il s'agit ici d'un exemple avec une classe
User:

public static void main(String args[]) {
TestHttp test = new TestHttp();

try {
String result = test.getHTML("http://127.0.0.1/[restServer]");

System.out.println(result);

System.out.println(test.postJSON(
"http://127.0.0.1/[restServer]/user/connect"”, new User(
"admin@local.fr", "0000")));

} catch (IOException e) {
e.printStackTrace();

}

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/gui/rest?rev=1426533627

Last update: 2019/08/31 14:39

http://slamwiki2.kobject.net/ Printed on 2026/02/04 08:14


http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/gui/rest?rev=1426533627

	Accès à une API Rest en java
	-- Ressources
	-- JSON
	-- Modèle
	-- Classe de test
	-- De JSON au model
	-- Du model à JSON


	-- Http requests
	-- GET
	-- POST

	-- POST Classique


