2026/01/27 23:57 1/16 Hibernate

Hibernate

Site de référence : www.hibernate.org
Hibernate est un produit Open source sous licence GNU LGPL, développé par une équipe issue de la
communauté JBOSS, aujourd'hui filiale de la société Red Hat.

Principale fonctionnalité :

Le rdle principal d'Hibernate est de remplacer I'acces aux bases de données par I'appel de méthodes objet de
haut niveau.

Hibernate 3, version avec laquelle nous allons travailler, est capable de gérer la persistance avec des bases de
données relationnelles, mais aussi avec des bases de données objet et des fichiers XML.

Il existe également une version d'Hibernate pour .net : NHibernate.

Ressources

Fichiers

¢ Base de données
¢ Fichiers jar
¢ Fichier xml de configuration d'Hibernate

Documentation

e Documentation Hibernate
¢ Annotations JPA
¢ Langage de requétes HQL

Configuration logicielle

Vous disposez de :

Eclipse Juno J2EE
Hibernate 3

Mysql Server

Driver JDBC pour Mysq|l

Sous partie

bklablaz

Contexte

Nous allons travailler a partir d'un cas simple, et assez couramment utilisé :

e Un SI composé de produits, classés en catégories (1 CIF).
e Des commandes de produits effectuées, dont le détail est stocké dans des lignes (1 CIM).

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://www.hibernate.org
http://slamwiki2.kobject.net/_media/slam4/orm/ormh.sql
http://slamwiki2.kobject.net/_media/slam4/orm/jarhibernate.rar
http://slamwiki2.kobject.net/_media/slam4/orm/hibernate.cfg.xml
http://docs.jboss.org/hibernate/orm/3.5/reference/fr-FR/html/index.html
http://docs.jboss.org/hibernate/annotations/3.5/reference/en/html_single/
http://docs.jboss.org/hibernate/orm/3.5/reference/fr-FR/html/queryhql.html

Last update: 2019/08/31 14:21 slam4:orm:hibernate http://slamwiki2.kobject.net/slam4/orm/hibernate

Wt orn.commande
% id rint(11)
[dateCommande : date

viel orm. ligne g o categorie
¢ idCommande : int(11)P 2 id : int(4)
¢ idProduit : int(11) 2 libelle : varchar(255)

quantite : int(4)

ﬂ.ﬂ. orm. produit

g id rint(11)

idCategorie @ int(4)
Izl nom : varchar(2355)
prix : float

Mise en place

Mise en place la configuration logicielle.

Dans Eclipse

e Créer un nouveau Dynamic Web Project dans Eclipse
o Intégrer les jars d'Hibernate 3 et le driver JDBC pour mysql dans le dossier WebContent/WEB-INF/lib
¢ Copier le fichier xml de configuration d'Hibernate dans le dossier src du projet.

Dans phpMyAdmin

e Créer la base de données ormH sur votre serveur Mysql en exécutant le script de création (la base est
créée dans le script).

Afficher le concepteur pour visualiser les tables, et les relations : Pour chaque table, notez les contraintes
d'intégrité :

1. d'entité (clé primaire)
2. référentielle (relations)

Exemple :

Produit :

e id (primary key)
¢ idCategorie (foreign key references categorie.id)

Hibernate

Ouvir le fichier de configuration d'Hibernate dans le dossier src :

http://slamwiki2.kobject.net/ Printed on 2026/01/27 23:57

http://slamwiki2.kobject.net/_detail/slam4/ormbddschema.png?id=slam4%3Aorm%3Ahibernate

2026/01/27 23:57 3/16 Hibernate

Vérifiez les parameétres de connexion a Mysq|.

Propriété |Valeur [Signification
hbm2ddl.auto|validate|Permet de vérifier la correspondance entre le schéma de la base et les classes métiers
show_sq|l true Permet d'afficher les instructions SQL exécutées dans la console Eclipse

Les lignes suivantes vont permettre d'assurer la persistance des classes que nous allons créer : Categorie et
Produit.

<mapping class="metier.Categorie" />
<mapping class="metier.Produit" />

hibernate.cfg.xml

<?xml version="1.0" encoding="utf-8"7>

<!DOCTYPE hibernate-configuration
PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory >

<property name="connection.url">jdbc:mysql://localhost/orm</property>
<property name="connection.username">root</property>
<property

name="connection.driver class">com.mysql.jdbc.Driver</property>
<property name="dialect">org.hibernate.dialect.MySQLDialect</property>
<property name="connection.password"></property>
<property name="connection.pool size">10</property>
<property name="current session context class">thread</property>
<property

name="cache.provider class">org.hibernate.cache.NoCacheProvider</property>

<property name="hbm2ddl.auto">validate</property>
<property name="show sql">true</property>
<property name="format sql">true</property>

<mapping class="metier.Categorie" />
<mapping class="metier.Produit" />

</session-factory>
</hibernate-configuration>

Création d'une classe de lancement de session Hibernate

Il est maintenant nécessaire de créer une classe Java permettant de piloter une session Hibernate. Cette classe
n'ayant besoin d'étre instanciée qu'une seule fois pour ensuite nous permettre d'effectuer le mapping entre
classes et base de données, nous utiliserons une classe statique, ou un singleton. (c'est une pratique
recommandée par la communauté |Boss).

Créer la classe HibernateUtil dans le package hibernate

|h HibernateUtil.java

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/_export/code/slam4/orm/hibernate?codeblock=1
http://slamwiki2.kobject.net/_export/code/slam4/orm/hibernate?codeblock=2

Last update: 2019/08/31 14:21 slam4:orm:hibernate http://slamwiki2.kobject.net/slam4/orm/hibernate

hibernate
org.hibernate.Session
org.hibernate.SessionFactory
org.hibernate.cfg.AnnotationConfiguration

HibernateUtil

SessionFactory sessionFactory
buildSessionFactory

SessionFactory buildSessionFactory
// Create the SessionFactory from hibernate.cfg.xml
AnnotationConfiguration().configure().buildSessionFactory
Throwable ex
// Make sure you log the exception, as it might be swallowed
System.err.println("Initial SessionFactory creation failed."

ex
ExceptionInInitializerError(ex

SessionFactory getSessionFactory
sessionFactory

void shutdown
// Close caches and connection pools
getSessionFactory().close

Session getSession
getSessionFactory().openSession

Modele relationnel et modele objet

Modele relationnel :

http://slamwiki2.kobject.net/ Printed on 2026/01/27 23:57

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+throwable
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system
http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+exceptionininitializererror

2026/01/27 23:57

5/16

Hibernate

viel

orm. ligne

¢ idCommande : int{11)}
@ idProduit : int(11)
quantite : int(4)

EC} orm. commande
@ id :int(11)
[dateCommande : date

U oo produit

¢ id :int(11)

idCategorie @ int(4)
£l nom : varchar(255)
prix : float

Modeéle Objet (diagramme de classes) correspondant :

Ligne

- quantite :int

Commande

- dateCommande : java.sgl.Date

0.~

Produit

- prix : float
- nem : Shing

a.-
produits

Categorie
- likelle : String

1.1
categorie

g o categorie
¢ id : int(4)
2 libelle : varchar(255)

Nous allons modifier le modele Objet pour le rendre compatible avec Hibernate et permettre le mapping, en
ajoutant des membres qui serviront d'identifiants (habituellement inutiles dans le monde Objet) :

Commande

- dateCommande : java.sgl.Date

id

cint

Ligne

- numere int
- quantite :int

0.
0.-
a.-
produits
Preduit
- id :int
- prix : float
- nem : Shing

Categorie
- id :int
- libelle : String
1.1
categorie

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam4:orm:hibernate http://slamwiki2.kobject.net/slam4/orm/hibernate

Création des classes métier

La Java persistence API (JPA) sera utilisée pour définir le mapping relationnel/objet. Elle va permettre de mettre
des annotations sur les classes métier de facon a définir leur persistance.

Produits et catégories

Ci-dessous le début de I'implémentation des classes :

[J] Categoriejava 52 = O

backage metier; -

Lt B b

import java.util.List;

o

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

import javax.persistence.OneToMany;
import - javax.persistence.Table;

=]

m

= =
[R v

I
LR U I]

@ENtity
[@Table(name="Categorie")
public - class Categorie {
@Id
[@Column({name="1id"}
[@GeneratedValue (strategy=GenerationType. IDENTITY)
private int-id;

= =k = =
= 0 W e

=
w0oca

<]

[@Column{name="1ibelle")
private String libelle;

LR

[@neToMany (mappedBy="categorie")
private List<Produit® produits;

=] 0 W

public Categorie() {
3 =

O % I SR R T R S I R

I -

http://slamwiki2.kobject.net/ Printed on 2026/01/27 23:57

http://fr.wikipedia.org/wiki/Java_Persistence_API

2026/01/27 23:57 7/16 Hibernate

Produit.java 53 = B
[0 j

package metier; -

L B2k

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.Id;

import javax.persistence.JoinColumn;
import javax.persistence.ManyTolOne;
import javax.persistence.Table;

= O W
m

=]

&

(=]

Entity
@Table{name="Produit™)
public class Produit {
@Id
@Column({name="1d"}
private int id;

Sl el i el
= O oL e L R

oo

[@Column(name="nom")
private String nom;

2]

@Column{name="prix")
private fleoat prix;

R

@ManyToOne
[@JoinColumn(name="idCategorie")
private Categorie categorie;

] 0

4]

1]

public Produit() {
} -

4 T 3

L o o o
[y

]

Les principes de construction des classes métiers a mapper avec hibernate sont les suivants :

¢ A chaque champ de la base correspond un membre de données de la classe
e les types de données java et sql doivent étre compatibles (consulter la documentation hibernate pour
voir la correspondance entre les types)
* La classe doit étre un java Bean pour permettre a Hibernate de travailler :
o elle doit disposer d'un constructeur sans parametre
o Chacun de ses membres doit disposer d'accesseurs
o Le mapping avec la base de données est défini au travers des annotations JPA posées sur les
membres de la classe.

¢ Implémenter les classes Categorie et Produit dans le package metier
o Utiliser la complétion pour faire les imports

e Générer les accesseurs, le constructeur sans parametre

e Ajouter un constructeur initialisant les membres de données

¢ Ajouter un toString affichant les champs proprement concaténés

A partir de I'observation de cette premiere implémentation et en utilisant a bon escient la documentation,
répondez aux questions suivantes :

. Comment est déclarée la table assurant la persistance d'un objet ?

. Comment est déclaré le mapping entre un membre de la classe et un champ de la table relationnelle ?
. Comment est déclarée la clé primaire de la table ?

. Quelles sont les possibilités de déclaration des clés primaires ?

H W N

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21

5. Réaliser un tableau montrant la correspondance de type (entier, chaine, etc.) entre les propriétés d'une
classe et les champs d’une table.

6. Montrez a I'aide d'un schéma (par ex. deux classes liées au dessus de deux tables liées) comment se

parametre le lien bidirectionnel entre deux classes (en spécifiant les éléments a fournir dans les
annotations)

Programme de test

¢ Implémenter le programme suivant dans un package nommé console, rendez le exécutable.
e Exécutez le code puis observez la base de données.

[J] TestijoutProduitCategoriejava 532 = O

-~
“
-
“

[ay ¥y B O WY) Gl Ra

Wwoca

]

(s) B R WU o I S

package console; .
import metier.Categorie;[]

public class TestAjoutProduitCategorie {
public static void main(String[] args){

Session- session=-HibernateUtil.getSession();
Transaction trans= session.beginTransaction();

Categorie aCategorie=new Categorie("Presse™);
session.persist(aCategorie);

Produit aProduit=new Produit(“Programmez!™, 3.@f, aCategorie);
session.persist(aProduit);

trans.commit();
session.close();

Analysez le code du programme et répondez aux questions en vous aidant au besoin de la documentation :

N

A quoi correspond la méthode persist() ?
A quoi correspond la méthode commit () ?
Comment ont été traduits les liens objet entre le membre categorie et produits entre ces classes dans
les tables de la base ?

Quelles requétes SQL ont été créées par Hibernate pour réaliser la persistance ?
Pourquoi comportent t-elles des points d'interrogation ?

Chargement d'un objet

Observation du chargement d'un objet, par I'intermédiaire de sa clé primaire.

Programme de chargement d'un produit

¢ Implémenter le programme suivant dans le package nommé console, rendez le exécutable.

http://slamwiki2.kobject.net/

slam4:orm:hibernate http://slamwiki2.kobject.net/slam4/orm/hibernate

Printed on 2026/01/27 23:57

2026/01/27 23:57 9/16 Hibernate

e Exécutez le code et regardez le résultat.
o Mettez le point d'arrét indiqué et inspectez I'objet aProduit, et son membre catégorie .

TestLoadProduit.java 53 = 8
J

package console; -

import - hibernate.Hibernateltil;[]

=] Ld P

public class TestLoadProduit: {

(X e

5

public static void main(String[] args) {
Session session= HibernateUtil.getSession();

Produit aProduit=(Produit) session.get(Produit.class, 58);
System.out.println{aProduit.getNom{));
System.out.println{aProduit.getCategorie().getlibelle());
session.close();

O W s b R

Wiooa -

]

Programme de chargement d'une catégorie

Implémenter le programme suivant dans le package nommé console, rendez le exécutable.
Exécutez le code et regardez le résultat.

Mettez le point d'arrét indiqué et inspectez I'objet aCategorie, et son membre produits.

Exécutez en pas a pas (step over) et inspectez toujours I'objet aCategorie, et son membre produits.

[J] TestLoadCategoriejava &2 = O

package consocle; -

import hibernate.HibernateUtil;

=] d P =

public class Test]oadCategorie {

Wa

=}

public static void main(5tring[] args) {
Session session= -HibernateUtil.getSession();

Categorie aCategorie=(Categorie) session.get(Categorie.class, 3);
System.out.println(aCategorie.getlibelle());
System.out.println(aCategorie.getProduits().get(@).getNom{));
System.out.println{aCategorie.getProduits().get(3).getNom());
session.close();

[a RV R R T 8

wooo
et

o
.

A partir de ses 2 programmes et de leur exécution :

1. Précisez ce que charge exactement Hibernate lors du chargement d'un Objet
2. Précisez comment sont chargés les instances liées a un objet chargé pour les liens onToMany et
manyToOne

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam4:orm:hibernate http://slamwiki2.kobject.net/slam4/orm/hibernate

3. En quoi consiste le chargement paresseux d'Hibernate et la qualification lazy (rechercher dans I'aide)
Chargement de listes d'objets

Interrogation de données avec Hibernate :

Projection

Créer le programme suivant

[J] TestProjectionjava 52 = B
package conscle; -
import java.util.list;
import - hibernate.HibernateUtil;
import metier.Categorie;

import org.hibernate.Query;
import org.hibernate.Session;

12 public class TestProjection-{

13

14 fE*

15 args

16 */

17 @suppressWarnings({“"unchecked™)

18 public- static void main{5tring[] args) {

19 Session session= HibernateUtil.getSession();

2@ Query - query=session.createQuery("from Categorie");
21 List<Categorie» categories=query.list(};

22 for(Categorie categorie:categories)

23 system.out.println(categorie.getlibelle());
24 h

25

26 }

-y

A partir de ce programme :

1. Interprétez la forme de la requéte passée a la méthode createQuery, pourquoi n'est-elle pas complete ?
2. Renseignez-vous sur HQL dans la documentation

Modifiez la méthode toString de la classe Categorie :

@Override
String toString
"Categorie [id=" id ", libelle=" libelle ", produits="
produits "

Modifiez le programme pour qu'il utilise cette méthode :

http://slamwiki2.kobject.net/ Printed on 2026/01/27 23:57

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+string

2026/01/27 23:57 11/16

Hibernate

Categorie categorie:categories
System.out.println(categorie

A partir de I'exécution du programme modifié :

1. Interprétez et expliquez le résultat obtenu

Sélection

Créer le programme suivant

[J] TestProjection.java [J] TestSelectionjava 52 [J] Produit.java

package console;

import java.util.List;[]

[I WY e]

public class TestSelection {

- FEL

args

E

[y LS B N Y I S S

= @Sﬁpp’essﬁa’nings("unchecked"}
public static void main(String[] args) {
Session session= HibernateUtil.getSession();

List<Produit> produits=query.list();
for(Produit produit:produits)
System.out.println{produit.getNom()+

[T I S T N S

[P

A partir du programme :

1. Interprétez les requétes SQL exécutées par Hibernate

Créer le programme suivant

Query query=session.createQuery("from Produit where prix:1e");

+produit. getPrix())

e |

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

Last update: 2019/08/31 14:21 slam4:orm:hibernate http://slamwiki2.kobject.net/slam4/orm/hibernate

[J] TestProjection.java [J] TestSelection.java 52 | [J] Produitjava [J] Categoriejava = 8

package console; -

import java.util.List;[]

[N WV N S

public class TestSelectionl{

JEE

args
*/
@suppressWarnings ("unchecked™)
public static void main(String[] args) {
Session session=-HibernateUtil.getSession();

19 Query - query=session.createQuery("from Produit prod where prod.categorie.libelle="beauté'™);

28 List<Produit: produits=query.list();

21 for(Produit produit:produits)

22 Ssystem.out.println(produit.getiom()+" "+produit.getCategordie());

23 3

25}

26 -
4 [

A partir du programme :

1. Interprétez les requétes SQL exécutées par Hibernate

Sélection avec distinct et projection

Créer le programme suivant

[J] TestProjection.java [J] TestSelection.java [3] Produit.java [J] Categoriejava [J] TestDistinctSelectionjava &3 = 0

package console; -

@ import java.util.List;[]

ST S

public class TestDistinctSelection-{

JEE

args|

*)

[T T

@suppressWarnings(“unchecked™)
public static void main(String[] args) {
Session-session=-HibernateUtil.getSession();
Query query=session.createQuery(“select distinct prod.categerie from Produit prod where prod.prix>18");
List<Categorie> categories=query.list();
for(Categorie categorie:categories)
System.out.println(categorie.getLibelle(});

A partir du programme :

1. Expliquer ce que fait le programme
2. Interprétez la requétes SQL exécutée par Hibernate : quel est le service rendu par I'ORM dans ce cas ?

Gestion des commandes

Implémenter les classes métier Commande et Ligne, en utilisant le début de leur implémentation donné ci
dessous, et le diagramme de classe :

http://slamwiki2.kobject.net/ Printed on 2026/01/27 23:57

2026/01/27 23:57 13/16

Hibernate

¢ Ne pas oublier les régles citées précédemment (bean + réf dans le fichier de configuration + annotations

JPA)
e Ajouter un constructeur avec paramétres permettant d'instancier correctement une ligne et une
commande
Commande
- id Cint
- dateCommande : Date
o.*
Ligne
- numere Cint T
- guantite :int
0.+
Froduit
- id cint
- prix : float
- nom : Shing
Commande

[J] Commandejava 52
3% import java.util.Arraylist;[]

15

9_

(VI T S T U T R (s S Y R o Y A "]

Ligne

6 (@E
7 [@Table{name="Commande™)
& public class Commande {

ntity

{@Id

[@Column({name="1d")
[@GeneratedValue(strategy=GenerationType. IDENTITY)
private int id;

[@Column({name="dateCommande” ,insertable=false,updatable=false)
private Date dateCommande;

[@neToMany (mappedBy="commande" , cascade=CascadeType.PERSIST)
private List<lLigne> lignes;

public Commande() {
lignes=new ArraylList<>();

}

m

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam4:orm:hibernate http://slamwiki2.kobject.net/slam4/orm/hibernate

[J] Lignejava &2 = B

hackage metier; -

i R}

#® import - javax.persistence.Column;

m

12 [@Entity

13 @Table(name="Ligne")

14 public class Ligne {

15

16 fi1d

17 Generatedvalue (strategy=GenerationType. IDENTITY)
18 @Column {name="numero™)

19 private int numero;

28

212 @Coclumn{name="quantite")

22 private int quantite;

23

24:= [@ManyToOne

25 #JoinColumn{name="1idCommande™}
2B private Commande commande;

27

28= [@ManyToOne

29 @loinColumn{name="1idProduit"}
3@ private Produit produit;

3

1. Justifiez les annotations permettant de mettre en oeuvre la contrainte d'intégrité multiple
2. Interprétez I'annotation sur le membre dateCommande, en allant voir comment ce champ est défini dans
la base de données

Création de commandes

Implémenter le programme suivant.
Exécutez le.

http://slamwiki2.kobject.net/ Printed on 2026/01/27 23:57

2026/01/27 23:57

15/16

Hibernate

[J] CreateCommandejava &2

i ka

sy N

LU= e I

]

= O W = R

wWoCa

=] 0 W s k3 =

WoCa

]

=
R}
b

1. Analysez puis commentez chaque ligne (dans le code) de ce programme

package console;
® import java.util.List;
public class CreateCommande {

@suppressWarnings("unchecked")
public static void main(String[] args) {

Session- session=-HibernateUtil.getSession();
Transaction trans= session.beginTransaction();

Produit produit;

Commande - cmd=new Commande();

Ligne ligne;

Query query=session.createQuery("from Produit™);
List<Produit> produits=query.list();
produit=produits.get(3);

ligne=new Ligne(3, cmd, produit);
cmd.getlignes().add(1ligne);
session.persist(ligne);

produit=produits.get(6);

ligne=new Ligne(1@, cmd, produit);
cmd. getlignes().add(ligne);
session.persist(ligne};
session.persist(cmd};

trans.commit();
session.close();

2. Interprétez la réponse apportée par Hibernate a I'exécution

=

Corriger le programme en conséquence, vérifiez les résultats obtenus dans la base de données.

Test Web

m

e Dans un package technics, Ecrire une classe Gateway disposant de méthodes statiques permettant
d'obtenir les résultats suivants :

1.
2.
3.
4.

La liste des catégories ;

la liste des produits d’une catégorie donnée ;
enregistrant une ligne ;

enregistrant une commande.

e Créer une classe Display disposant d'une méthode statique
1. Retournant une liste au format HTML a partir d'une ArrayList passée en parameétre
¢ Construire les pages JSP répondant au service suivant :
1. I'utilisateur lance I'application dans son navigateur ;
2. il voit une liste déroulante de catégories ;

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam4:orm:hibernate http://slamwiki2.kobject.net/slam4/orm/hibernate

3.

4.
5.
6.

il sélectionne une catégorie dans la liste et voit une liste déroulante des produits de cette
catégorie ;

il sélectionne un produit et saisit une quantité voulue ;

un bouton lui permet de continuer le remplissage de son panier (retour a 2)

un bouton lui permet de valider son panier : la commande est alors enregistrée.

Ajouter toutes les classes (servlet) et méthodes nécessaires pour éviter d'avoir a effectuer un quelconque
traitement dans les JSP.

Manipulations et contexte en partie inspirés d'un TD Hibernate de JP PUJOL

From:

http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/orm/hibernate

Last update: 2019/08/31 14:21

http://slamwiki2.kobject.net/ Printed on 2026/01/27 23:57

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/orm/hibernate

	Hibernate
	Ressources
	Fichiers
	Documentation

	Configuration logicielle
	Sous partie

	Contexte
	Mise en place
	Dans Eclipse
	Dans phpMyAdmin
	Hibernate
	Création d'une classe de lancement de session Hibernate

	Modèle relationnel et modèle objet
	Création des classes métier
	Produits et catégories
	Programme de test

	Chargement d'un objet
	Programme de chargement d'un produit
	Programme de chargement d'une catégorie

	Chargement de listes d'objets
	Projection
	Sélection
	Sélection avec distinct et projection

	Gestion des commandes
	Commande
	Ligne

	Création de commandes

	Test Web

