2026/01/28 03:56 1/15 KObject

KObject

Site de référence : www.kobject.net
KObject est un produit Open source sous licence GNU LGPL, disponible sur la forge logicielle sourceforge.net.

Principales fonctionnalités :

¢ Mapping relationnel/Objet
¢ Mise en place de MVC2 pour J2ee

Ressources

Fichiers

e Base de données
e Librairie Kolibrary-1.0.0.23f-betal
¢ Fichier de configuration config.ko

Documentation

¢ Documentation KObject
Configuration logicielle

Vous disposez de :

Eclipse Juno J2EE
Kobject-library1.0.0.23f-betal
Mysql Server

Driver JDBC pour Mysq|l

Contexte

Nous allons travailler a partir d'un cas simple, et assez couramment utilisé :

e Un SI composé de produits, classés en catégories (1 CIF).
e Des commandes de produits effectuées, dont le détail est stocké dans des lignes (1 CIM).

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://www.kobject.net
http://slamwiki2.kobject.net/_media/slam4/orm/ormk.sql
http://sourceforge.net/projects/kobject/files/latest/download
http://slamwiki2.kobject.net/_media/slam4/orm/config.ko
http://tutorial.kobject.net/doku.php?id=java

Last update: 2019/08/31 14:21 slam4:orm:kobject http://slamwiki2.kobject.net/slam4/orm/kobject

Wt orn.commande
% id rint(11)
[dateCommande : date

vie orm. ligne g o categorie
¢ idCommande : int(11)P 2 id : int(4)
¢ idProduit : int(11) 2 libelle : varchar(255)

quantite : int(4)

ﬂ.m. orm. produit

g id rint(11)

idCategorie @ int(4)
Izl nom : varchar(2355)
prix : float

Mise en place
Mise en place la configuration logicielle.

Dans Eclipse

e Créer un nouveau Dynamic Web Project dans Eclipse

Intégrer le jar de Kobject et le driver JDBC pour mysql dans le dossier WebContent/WEB-INF/lib
Copier le fichier de configuration de Kobject (config.ko) a la racine du projet.

copier le fichier de configuration d'ehCache ehCache.xml dans le dossier src

Attention, ne pas utiliser le plugin KObject pour ce TD, et ne pas ajouter KObject au projet.
Ne pas générer les classes de facon assistée, avec le plugin.

Dans phpMyAdmin

e Créer la base de données ormK sur votre serveur Mysql en exécutant le script de création (la base est
créée dans le script).

Afficher le concepteur pour visualiser les tables, et les relations : Pour chaque table, notez les contraintes
d'intégrité :

1. d'entité (clé primaire)
2. référentielle (relations)

Exemple :
Produit :

¢ id (primary key)
¢ idCategorie (foreign key references categorie.id)

http://slamwiki2.kobject.net/ Printed on 2026/01/28 03:56

http://slamwiki2.kobject.net/_detail/slam4/ormbddschema.png?id=slam4%3Aorm%3Akobject

2026/01/28 03:56 3/15 KObject

KObject

Placer le fichier de configuration de KObject a la racine du projet, et ouvrez le :

Vérifiez les parameétres de connexion a Mysq|.

Propriété Valeur|Signification
package |metier |[Package java dans lequel les classes métier seront définies
debug SQL |Permet d'afficher les instructions SQL exécutées dans la console Eclipse

config.ko

base=ormK

classes=

controlClass=
cssFile=WebContent/css/css.properties
dbOptions=

dbType=mysql

debug=SQL
erFile=WebContent/conf/validation/er.properties
footerURL=WEB-INF/footer.jsp
headerURL=WEB-INF/header.jsp
host=127.0.0.1

koDateFormat=dd/MM/yyyy
mappingFile=WebContent/conf/mox.xml
messagesFile=WebContent/conf/validation/messages.properties
nullValue=

package=metier

password=

port=3306

sqlDateFormat=yyyy-MM-dd
useSetters=false

user=root
validationFile=WebContent/conf/kox.xml
webApp=false

useCache=false

cacheType=1

Modele relationnel et modele objet

Modéele relationnel :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/_export/code/slam4/orm/kobject?codeblock=0

Last update: 2019/08/31 14:21 slam4:orm:kobject

http://slamwiki2.kobject.net/slam4/orm/kobject

Wt orn.commande

@ id :int(11)

[dateCommande : date

viel orm. ligne

¢ idCommande : int{11)}
@ idProduit : int(11)

quantite : int(4)

U oo produit

¢ id :int(11)

idCategorie @ int(4)
Izl nom : varchar(2355)
prix : float

Modeéle Objet (diagramme de classes) correspondant :

Commande

- dateCommande : java.sgl.Date

0.
Ligne
- quantite :int [———
Categorie
- libelle : String
0.~ o.*
produits 1.1
Preduit categorie
- prix : float
- nem : Shing

g o categorie
¢ id : int(4)
¢ libelle : varchar(255)

Nous allons modifier le modele Objet pour le rendre compatible avec KObject et permettre le mapping, en
ajoutant les membres qui serviront de clés étrangéres (habituellement inutiles dans le monde Objet) :

KCommande

- dateCommande : java.sgl.Date

0.~
KLigne
- idCommande :int [—
- quantite cint _
- idProduit int 1.1 KCategorie
o categorie [jipelle : Sting

KProduit /

. 0.
- m:?m : Sfring produits
- prix : float

- idCategorie :int

http://slamwiki2.kobject.net/

Printed on 2026/01/28 03:56

2026/01/28 03:56 5/15 KObject

Création des classes métier

La persistance des données est mise en place par Héritage et introspection. Les classes métier doivent hériter
de la classe KObject.

Produits et catégories

Ci-dessous le début de I'implémentation des classes :

[J] KCategoriejava &2 = O

1 package metier;

*

& import net.ko.kobject.KListObject;[]

-
ra
3
G f**
B

m

* Classe KCategorie
S
8 (@SuppressWarnings("serial™)
5 public class KCategorie extends KObject {
8 private KListObject<KProduit: produits;
11 private String libelle;
2g public KCategorie() {
13 super();
14 keyFields="1id";
15 tableName="categorie”;
16 hasMany(KProduit.class);

[1] *KProduitjava 53 = O

1 package metier;

-~
<

3% import net.ko.kobject.KListObject;[]
5 - ._.":'::':
& * Classe KProduit

7 £

13

m

8 @ﬁupp’essﬁa’nings["serial"}
9 public class KProduit extends KObject {

18 private KListObject<KLigne> lignes;
11 private int idCategorie;
12 private float prix;
13 private KCategorie categorie;
_14 private String nomj
15

16< public KProduit() {

17 super();

18 keyFields="1id";

19 tableName="produit™;

28 hasMany(KLigne.class);

21 belongsTo(KCategorie.class);
22 1

L xS

1| 1] 3

Les principes de construction des classes métiers a mapper avec KObject sont les suivants :

¢ A chaque champ de la base correspond un membre de données de la classe
e les types de données java et sql doivent étre compatibles (consulter la documentation KObject pour voir

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam4:orm:kobject http://slamwiki2.kobject.net/slam4/orm/kobject

la correspondance entre les types)
La classe doit étre un java Bean pour permettre a KObject de travailler :
o elle doit disposer d'un constructeur sans paramétre initialisant le membre keyFields définissant les
champs présents dans la clé primaire
o Chacun de ses membres doit disposer d'accesseurs

Implémenter les classes Categorie et Produit dans le package metier

Utiliser la complétion pour faire les imports

Générer les accesseurs, le constructeur sans parametre

Ajouter un constructeur initialisant les membres de données et appelant le constructeur précédent
Ajouter un toString affichant les champs proprement concaténés

A partir de I'observation de cette premiére implémentation et en utilisant a bon escient la documentation,
répondez aux questions suivantes :

Comment est déclarée la table assurant la persistance d'un objet ?

Comment est déclaré le mapping entre un membre de la classe et un champ de la table relationnelle ?
Comment est déclarée la clé primaire de la table ?

Réaliser un tableau montrant la correspondance de type (entier, chaine, etc.) entre les propriétés d'une
classe et les champs d’une table.

5. Montrez a I'aide d'un schéma (par ex. deux classes liées au dessus de deux tables liées) comment se
paramétre le lien bidirectionnel entre deux classes (en spécifiant les éléments a fournir dans le
constructeur)

Ll

Programme de test

¢ Implémenter le programme suivant dans un package nommé console, rendez le exécutable.
e Exécutez le code puis observez la base de données.

http://slamwiki2.kobject.net/ Printed on 2026/01/28 03:56

2026/01/28 03:56 7/15 KObject

[J] KCategorie java TestAjoutProduitCategoriejava 52 | [J] KProduitjava = B

package console; -

import metier.KCategorie;[]

-
“
=
G

public class TestAjoutProduitCategorie {
public static void main(String[] args){

try {
Ko.kstart();

KCategorie aCategorie=new KCategorie("Presse™);
aCategorie.add(Ko. kdatabase());

KProdult aProduit=new KProduit("Programmez!", 3.ef, aCategorie);
aProduit.add(kKo. kdatabase());

Lo

19 Ko.kstop();

28

21 1 catch (Exception-e} {

22 e.printstackTrace();

23 }

24 }

25}

26 o
4 4

Analysez le code du programme et répondez aux questions en vous aidant au besoin de la documentation :

1. A quoi correspond la méthode kstart() ?

2. Comment ont été traduits les liens objet entre le membre categorie et produits entre ces classes dans
les tables de la base ?

3. Quelles requétes SQL ont été créées par KObject pour réaliser la persistance ?
4. Que se passe t-il si I'insertion de la catégorie échoue ?

Chargement d'un objet

Observation du chargement d'un objet, par I'intermédiaire de sa clé primaire.
Programme de chargement d'un produit
e Implémenter le programme suivant dans le package nommé console, rendez le exécutable.

e Exécutez le code et regardez le résultat.
e Mettez le point d'arrét indiqué et inspectez I'objet aProduit, et son membre catégorie .

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam4:orm:kobject

http://slamwiki2.kobject.net/slam4/orm/kobject

[J] TestLoadProduitjava £3

L Pa =

= import
import
import

[s TN 5 R =9

~

public

(1= il

o

LRV % I S x]

[I S T N R N

oo

- FET

*

package console;

metier.KProduit;
net.ko.framework. Ko}
net.ko.kobject.KObject;

class TestLoadProduit {

args

pub]ic static void main(String[] args) {

try {
Ko.kstart();

= 0

-~

KProduit aProduit=(KProduit)kKObject.kloodOne(KProduit.class, Ko.kdotabase(), 5@8);

System.out.println{aProduit.getNom()});

} catch (Exception-e)

(

{
System.out.println(aProduit.getCategorie().getlibelle()};

{

)

E

e.printStackTrace(

1
Ko.kstop();

Programme de chargement d'une catégorie

[J] TestLoadCategoriejava 3

O W s pa

®

.
PR R YR Ry

a2

-
£

package - console;

= import metier.KCategorie;
import net.ko.framework.Ko;
import net.ko.kobject.KObject;

public class TestLoadCategorie {

args

= puﬁlic static void main(String[] args) {
try {

Ko.kstart();

Implémenter le programme suivant dans le package nommé console, rendez le exécutable.
Exécutez le code et regardez le résultat.
Mettez le point d'arrét indiqué et inspectez I'objet aCategorie, et son membre produits.

Exécutez en pas a pas (step over) et inspectez toujours I'objet aCategorie, et son membre produits.

= 0

KCategorie aCategorie=(KCategorie)KObject.kloadOne (KCategorie.class, Ko.kdatabase(), 3);

System.out.println(aCategorie.getLibelle());

System.out.println(aCategorie.getProduits());

System.out.println(aCategorie.getAttribute("produits"™));
} catch- (Exception e) {

¥

Ko.kstop();

e.printStackTrace();

http://slamwiki2.kobject.net/

Printed on 2026/01/28 03:56

2026/01/28 03:56 9/15 KObject

A partir de ces 2 programmes et de leur exécution :

1. Précisez ce que charge exactement KObject lors du chargement d'un Objet

2. Précisez comment sont chargées les instances liées a un objet chargé pour les liens belongsTo et
hasMany

3. En quoi consiste le chargement paresseux de KObject ?

Chargement de listes d'objets
Interrogation de données avec KObject :
Projection

Créer le programme suivant

[J] TestSelectionjava [J] *TestProjectionjava i3 = 0O

package console;

® import metier.KCategorie;[]

2
3
g
g

public class TestProjection {

[
args
=y
@suppressWarnings ("unchecked™)
public static void main(String[] args) {
try {
Ko.kstart();
KListObject<KCategorie> categories=(KListObject<KCategorie:)KListObject.kload(KCategorie.class, Ko.kdatabase());
for(KCategorie categorie:categories)
system.out.println(categorie.getlLibelle());

Ko.kstop();

} catch (Exception-e) {
e.printStackTrace();

Remplacez la boucle d'affichage des produits par :

System.out.println(categories.showWithMask("{libelle}:\n{produits}\n"

A partir de I'exécution du programme modifié :

1. Interprétez et expliquez le résultat obtenu

Sélection

Créer le programme suivant

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://www.google.com/search?hl=en&q=allinurl%3Adocs.oracle.com+javase+docs+api+system

Last update: 2019/08/31 14:21 slam4:orm:kobject http://slamwiki2.kobject.net/slam4/orm/kobject

TestSelection.java 53 = B8
| j

package console; -

i k3 =

import metier.KProduit;[]

=l

public class TestSelection {

[Xe s]
1

e

&

args
= @suppressWarnings{"unchecked™)
public static wvoid main(String[] args) {
try {
Ko.kstart();
KListObject<KProduit> produits=(KListObject<KProduit>)KListObject.kload(
KProduit.class, Ko.kdatabase(),"select * from produit where prix>18"};
for({KProduit produit:produits)
System.out.println{produit.gethiom()+
Ko.kstop();

m

[ay N W QR A N)

[Le i

+produit.getPrix());

“ &

2 1 catch (Exception - e) {

3 e.printstackTrace();

4 b

5 } B
26 } -

A partir du programme :

1. Combien de requétes SQL sont exécutées par KObject ?
2. Comment l'interprétez vous ?

Remplacer le lien belongsTo sur la classe Produit par :

belongsTo(KCategorie. .setlLazy(true

1. Combien de requétes SQL sont maintenant exécutées par KObject ?
2. Comment l'interprétez vous ?

Exécutez a nouveau le programme.

Créer le programme suivant

http://slamwiki2.kobject.net/ Printed on 2026/01/28 03:56

2026/01/28 03:56

11/15

KObject

[J] TestSelection.java 5| config.ko

package console;

import metier.KProduit;[]

[« W S

-]

public class TestSelection2 {

woca
I

18 args
12 @Slupp’essr.'a’nings("unchecked")
public-static void main(String[] args) {

try {
Ko.kstart();

KProduit.class, Ko.kdatabase(),

for(KProduit produit:produits)

[J] TestSelection2 java 22 | [J] TestSelection.java

KListObject<KProduit> produits=(KListObject<KProduit:)KListObject.kload(

"select * from produit p inner join categorie c on p.idCategorie=c.id where c.libelle="beauté""

m

| H

28 system.out.println(produit.getiom()+" "+produit.getCategorie(});

21 Ko.kstop();.l

22 } catch (Exception e} {

23 e.printStackTrace();

24 }

25 1 o

26 } -
4

A partir du programme :

1. Interprétez les requétes SQL exécutées par KObject

Sélection avec distinct et projection

Créer le programme suivant
[J] *TestDistinctSelection.java &1 = 0

package console; -
import metier.KCategorie;[]

public-class TestDistinctSelection {

WOOCD sl L R

=) JEE

[

args
= [@suppressWarnings("unchecked™)
public static void main(String[] args) {
try {
Ko.kstart();
KListObject<KCategorie> categories=(KListObject<KCategorie>)KListObject.kload(KCategorie.class, Ko.kdatabase(),
"select distinct c.* from categorie c-inner join produit-p on p.idcategorie=c.id where p.prix>18");
System.out.println{categories);
Ko.kstop()s
} catch: (Exception e} {
e.printStackTrace();
}

4 1 3

A partir du code et de son exécution :

1. Expliquer ce que fait le programme

Gestion des commandes

Implémenter les classes métier Commande et Ligne, en utilisant le début de leur implémentation donné ci

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam4:orm:kobject http://slamwiki2.kobject.net/slam4/orm/kobject

dessous, et le diagramme de classe :

¢ Ne pas oublier les régles citées précédemment (bean + héritage de KObject + définition du membre
keyFields)

e Ajouter un constructeur avec paramétres permettant d'instancier correctement une ligne et une
commande

KCommande
- dateCommande : java.sgl.Date

KLigne

- idCommande :int —
- quantite rint
- idProduit sint

KProduit

- nom : Sfring
- prix : float
- idCategorie :int

Commande

[J] KCommande.java 52 = 0

package metier; -

import net.ko.kobject.KListObject;

oy JEE

m

oW pa =

*.Classe KCommande

Ed _I'.

8 [@suppressWarnings("serial™)

9 public class KCommande extends KObject {
16 private KListObject<KLigne> lignes;
private java.sgl.Date dateCommande;

13 public KCommande() {
14 super();
15 keyFields="1id";
16 tableName="commande";
lignes=new KListObject<>(KLigne.class);
15 hasManyBelongsTe(kKLigne.class, KProduit.class);
15 } -
1 }

Ligne

http://slamwiki2.kobject.net/ Printed on 2026/01/28 03:56

2026/01/28 03:56

13/15

KObject

[J] KLignejava &2 KCommande,java

1 package metier;

2

3

4 import net.ko.kobject.KObject;

5o =

6 * Classe -KLigne

7 *

& (@SuppressWarnings("serial™)

9 public class KlLigne extends KObject {
1@ private KProduit produit;
11 private int- idCommande;

12 private int quantite;
13 private KCommande commande;
14 private int idProduit;

16 public KLigne(} {

17 super();

18 keyFields="idCommande ,idProduit™;
19 tableName="1igne";

20 belongsTo(KProduit.class);

21 belongsTo(KCommande.class);

22 }

1. Justifiez I'appel des méthodes permettant de mettre en oeuvre la contrainte d'intégrité multiple

Création de commandes

Implémenter le programme suivant.
Exécutez le.

m

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:21 slam4:orm:kobject http://slamwiki2.kobject.net/slam4/orm/kobject

[J] *CreateCommandeGood,java 52 = O

package console; -

import metier.KCommande;[]

[1a] [ea RTINS R]

public- class CreateCommandeGood {

[ex]

1 @suppresskWarnings (“unchecked™)
2 public static void main(S5tring[] args) {

3 try |

4 Ko.kstart();

KLigne ligne;

KCommande cmd=new KCommande();

KListObject<KProduit> produits=(KListObject<KProduit>)KListObject.kload(

8 KProduit.class, Ko.kdaotabase());
| ligne=new KLigne(produits.get(3), 1@, cmd);
8 ligne.tofdd();

cmd.getlignes().add(ligne);

ligne=new KLigne(produits.get(1@), 3, cmd);
ligne.tofdd();
cmd.getlignes().add(ligne);

[y I S FTR X

cmd . add (Ko. kdotabase ()} ;

Wooa

Ko.kstop();

&

T catch (Exception-e) {
e.printStackTrace();
h

(s I, R O WV S

3

1. Analysez puis commentez chaque ligne (dans le code) de ce programme
2. Vérifier que I'exécution a effectué les ajouts dans la base de données

Test Web

« Dans un package technics, Ecrire une classe Gateway disposant de méthodes statiques permettant
d'obtenir les résultats suivants :
1. La liste des catégories ;
2. laliste des produits d'une catégorie donnée ;
3. enregistrant une ligne ;
4. enregistrant une commande.
e Créer une classe Display disposant d'une méthode statique
1. Retournant une liste au format HTML a partir d'une ArrayList passée en parameétre
e Construire les pages JSP répondant au service suivant :
1. I'utilisateur lance I'application dans son navigateur ;
2. il voit une liste déroulante de catégories ;
3. il sélectionne une catégorie dans la liste et voit une liste déroulante des produits de cette
catégorie ;
4. il sélectionne un produit et saisit une quantité voulue ;
un bouton lui permet de continuer le remplissage de son panier (retour a 2)
6. un bouton lui permet de valider son panier : la commande est alors enregistrée.

u

http://slamwiki2.kobject.net/ Printed on 2026/01/28 03:56

2026/01/28 03:56 15/15 KObject

Ajouter toutes les classes (servlet) et méthodes nécessaires pour éviter d'avoir a effectuer un quelconque
traitement dans les JSP.

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/orm/kobject

Last update: 2019/08/31 14:21

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/orm/kobject

	KObject
	Ressources
	Fichiers
	Documentation

	Configuration logicielle
	Contexte
	Mise en place
	Dans Eclipse
	Dans phpMyAdmin
	KObject

	Modèle relationnel et modèle objet
	Création des classes métier
	Produits et catégories
	Programme de test

	Chargement d'un objet
	Programme de chargement d'un produit
	Programme de chargement d'une catégorie

	Chargement de listes d'objets
	Projection
	Sélection
	Sélection avec distinct et projection

	Gestion des commandes
	Commande
	Ligne

	Création de commandes

	Test Web

