2026/02/04 01:57 1/19 Doctrine

Doctrine

<
Javascript >>

Introduction a Codelgniter
Helpers

Bibliothéques

Sessions Codelgniter
Validation des formulaires
ORM IgnitedRecord
Doctrine
Javascript et codelgniter

Nk WwN

Doctrine est également un ORM qui peut étre associé a Codelgniter, il est beaucoup plus puissant, et plus
complet.

o Site de référence Doctrine
e Documentation
e Téléchargement DoctrineORM-2.2.1-full

Installation

Doctrine est installé en tant que bibliotheque dans codelgniter.
Créer un nouveau projet PHP, installer a nouveau Codelgniter.
Avec l'archive Doctrine :

e Dézipper l'archive.
¢ Copier le dossier Doctrine de I'archive dans le dossier application/libraries.

Créer une classe Doctrine.php dans le dossier libraries :

|h application/libraries/Doctrine.php

<?php
class Doctrine

// the Doctrine entity manager
public $em = null

public function  construct

// include our CodeIgniter application's database configuration
APPPATH. 'config/database.php'
// include Doctrine's fancy ClasslLoader class
APPPATH. 'libraries/Doctrine/Common/ClassLoader.php'

// load the Doctrine classes

$doctrineClasslLoader new \Doctrine\Common\ClasslLoader('Doctrine'’
APPPATH. 'libraries'

$doctrineClasslLoader->register

// load Symfony2 helpers

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://slamwiki2.kobject.net/doku.php?id=slam4:php:codeigniter:orm
http://slamwiki2.kobject.net/doku.php?id=slam4:php:codeigniter:javascript
http://slamwiki2.kobject.net/slam4/php/codeigniter
http://slamwiki2.kobject.net/slam4/php/codeigniter/helpers
http://slamwiki2.kobject.net/slam4/php/codeigniter/libraries
http://slamwiki2.kobject.net/slam4/php/codeigniter/session
http://slamwiki2.kobject.net/slam4/php/codeigniter/validation
http://slamwiki2.kobject.net/slam4/php/codeigniter/orm
http://slamwiki2.kobject.net/slam4/php/codeigniter/javascript
http://www.doctrine-project.org/
http://docs.doctrine-project.org/projects/doctrine-orm/en/2.0.x/index.html
http://www.doctrine-project.org/downloads/DoctrineORM-2.2.1-full.tar.gz
http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=0

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

// Don't be alarmed, this is necessary for YAML mapping files

$symfonyClassLoader = new \Doctrine\Common\ClassLoader('Symfony"
APPPATH. 'libraries/Doctrine’

$symfonyClassLoader->register

// load the entities

$entityClassLoader new \Doctrine\Common\ClassLoader('Entities'
APPPATH. 'models'

$entityClassLoader->register

// load the proxy entities

$proxyClassLoader = new \Doctrine\Common\ClassLoader('Proxies'
APPPATH. 'models'

$proxyClassLoader->register

// set up the configuration
$config new \Doctrine\ORM\Configuration

ENVIRONMENT ‘development’
// set up simple array caching for development mode
$cache new \Doctrine\Common\Cache\ArrayCache

// set up caching with APC for production mode

$cache new \Doctrine\Common\Cache\ApcCache
$config->setMetadataCacheImpl($cache
$config->setQueryCacheImpl($cache

// set up proxy configuration
$config->setProxyDir (APPPATH. 'models/Proxies'
$config->setProxyNamespace('Proxies'

// auto-generate proxy classes if we are in development mode
$config->setAutoGenerateProxyClasses (ENVIRONMENT 'development'

// set up annotation driver

//$yamlDriver = new
\Doctrine\ORM\Mapping\Driver\YamlDriver(APPPATH. 'models/Mappings"');

$driverImpl $config->newDefaultAnnotationDriver (APPPATH. 'models'

$config->setMetadataDriverImpl($driverImpl

// Database connection information
$connectionOptions = array

'driver' 'pdo_mysql'

'user' $db[ 'default']['username’
'password’ $db[ 'default'] [ 'password'’
"host' $db[ 'default']['hostname'’
"dbname’ $db[ 'default']['database’

// create the EntityManager
$em \Doctrine\ORM\EntityManager: :create($connectionOptions
$config

// store it as a member, for use in our CodeIgniter controllers.
$this->em $em

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57


http://www.php.net/array

2026/02/04 01:57 3/19

Doctrine

?>

Doctrine doit étre ensuite chargé automatiquement avec autoload.php :

$autoload| 'libraries' array('database', 'doctrine’
Le chargement de la bibliothéque database est indispensable

Logiquement, Doctrine est prét a fonctionner.
Vérifier que votre page d'accueil ne produit pas d'erreurs : http://localhost/siteURL/

Création des classes métier

Une classe métier correspond a la notion d'entity dans Doctrine.

Considérons la base de données suivante :

E'Q te=to utilisateurs

Zl prenaom : wvarchar{50) _

# id : int{12) Q) ==ic categores
[ datelnscription : date @id :int(11)

# age :int{11) 2] nom 3 warchar{30)

E nom : varchar(50)
# adulte : tinyint(1)
# categorie_id ; int(11)

La base de données sera composée de 2 entities: utilisateur et categorie. La relation de type CIF entre
utilisateurs et categories peut s'exprimer de la facon suivante :

e Chaque utilisateur appartient a 1 catégorie (manyToOne)
¢ Dans chaque categorie, on peut compter de 0 a n utilisateurs (oneToMany)

Le model utilisateur

Dans le dossier application/models :

o créer le fichier utilisateur.php
e générer ensuite les accesseurs sur les membres
e créer un constructeur sans parametres

|h application/models/utilisateur.php

<?php
/**
* @Entity
* @Table(name="utilisateurs")
&7
class Utilisateur
/**
* @Id @Column(type="integer")
* @GeneratedValue
*/
private $id

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://www.php.net/array
http://slamwiki2.kobject.net/_detail/slam4/php/codeigniter/models-utilisateurs-categories.png?id=slam4%3Aphp%3Acodeigniter%3Adoctrine
http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=2

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

/**
* @Column(type="string")
* @var string
*/

private $nom

/**
* @Column(type="string")
* @var string
*/

private $prenom

/**
* @Column(type="integer")
* @var integer
*/

private $age

/**
* @Column(type="boolean")
* @var string
*/

private $adulte

/**
* @ManyToOne(targetEntity="Categorie")
* @JoinColumn(name="categorie id", referencedColumnName="1id")
*/

private $categorie

?>

Un model est un fichier contenant une classe dont le nom commence par une majuscule.
Le nom du fichier doit étre le méme que celui de la classe, mais en minuscule.
Le fichier doit étre enregistré dans le dossier application/models/
Doctrine peut utiliser plusieurs systemes pour définir les modeéles :
o avec annotations dans le code php comme dans I'exemple
o avec fichiers xml
o avec fichiers yaml

Le model categorie

Dans le dossier application/models :

o créer le fichier categorie.php
e générer ensuite les accesseurs sur les membres
e créer un constructeur sans parametres

|h application/models/categorie.php

<?php

/**
* @Entity
* @Table(name="categories")
&7

class Categorie

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57


http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=3

2026/02/04 01:57 5/19 Doctrine

/**

* @Id @Column(type="integer")
* @GeneratedValue
=
private $id
/**
* @Column(type="string")
* @var string
*/
private $nom

/**

* @0neToMany(targetEntity="Utilisateur", mappedBy="categorie")
*/
private $utilisateurs

?>

Chargement des models

Le chargement peut étre automatique, par le biais de application/config/autoload.php
$autoload| 'model’ array('categorie’', 'utilisateur’
ou bien se faire dans un controleur :

$this->1load->model('utilisateur"

[l est nécessaire de créer a la main le dossier Proxies dans application/models pour permettre la génération
a la volée des classes de mapping

Gestion des utilisateurs
Controleur utilisateurs

Ajouter un controéleur utilisateurs dans controllers :

¢ la méthode all charge tous les utilisateurs, et leur catégorie correspondante.
e Elle appelle ensuite la vue v_utilisateurs et |ui passe les utilisateurs chargés (users)

|h application/controllers/utilisateurs.php

<?php
class Utilisateurs extends CI Controller
public function all
$query $this->doctrine->em->createQuery("SELECT u FROM Utilisateur u
join u.categorie c"
$users $query->getResult
$this->load->view('v utilisateurs', array('utilisateurs'=>%users

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://www.php.net/array
http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=6
http://www.php.net/array

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

?>

Vues

Liste des utilisateurs

Créer la vue v_utilisateurs pour afficher la liste des utilisateurs : La variable $utilisateurs est récupérée par la
méthode all du contréleur utilisateurs

|h application/views/v_utilisateurs.php
<?php
$utilisateurs $user
$user->getNom " (".$user->getCategorie getNom ")<br>"

?>

Tester en allant a I'adresse /utilisateurs/all/

{ |

G httpe/flocalhost/testPhpfindex.php &3

|
P T} qé-"?* http://localhost/testPhp/utilisateurs/all - B

GOOGLE (Aucune)
GATES (Aucune)
JOBS (Aucune)
APACHE (Aucune)
ORACLE (Aucune)
JOHNSON (Aucune)
KO (Admin)

Ajout d'utilisateur
Modification du controleur

Modifier le controleur utilisateurs :

¢ La méthode add permet d'afficher un formulaire v_utilisateur_add permettant d'ajouter un utilisateur
en saisissant son nom.

¢ La méthode submit_add effectue la validation du formulaire en cas de succes de la validation puis
appelle la vue v_success_add

|h application/controllers/utilisateurs.php

<?php
class Utilisateurs extends CI Controller
public function add

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57


http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=7
http://slamwiki2.kobject.net/_detail/slam4/php/codeigniter/users-list.png?id=slam4%3Aphp%3Acodeigniter%3Adoctrine
http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=8

2026/02/04 01:57 7/19 Doctrine

$this->1load->helper(array('form', ‘'url'

$this->load->library('form validation'

$this->form validation->set rules('username', 'Username'’
"trim|required|min length[5] |max length[12]]|xss clean'
$this->form validation->run FALSE

$this->load->view('v utilisateur add'

$this->submit add($ POST|["username"

public function submit add($name
$user new Utilisateur
$user->setNom($name
$this->doctrine->em->persist($user
$this->doctrine-=em->flush

public function all
$query = $this->doctrine->em->createQuery("SELECT u FROM Utilisateur u
join u.categorie c"
$users $query->getResult
$this->load->view('v utilisateurs',6 array('utilisateurs'=>%users

7>

Ajout des vues

La vue v_utilisateur_add sera appelée par I'intermédiaire du contréleur utilisateurs/add

|h application/views/v_utilisateur_add.php

<html>
<head>
<title>Ajout utilisateur</title>
</head>
<body>

<?php validation errors 7>

<?php form open('utilisateurs/add/"' 7>

<h5>Nom d'utilisateur</h5>

<input type="text" name="username" value="<?php set value('username'

?7>" size="50" />

<div><input type="submit" value="Ajouter utilisateur" /></div>

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://www.php.net/array
http://www.php.net/flush
http://www.php.net/array
http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=9

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

</form>
</body>
</html>

La vue v_success_add sera appelée apres soumission du formulaire par le controleur
utilisateurs/submit_add

|h application/views/v_success_add.php
<?php

$user->nom." ajouté"
?>

Tester en allant a I'adresse : http://localhost/testPhp/utilisateurs/add/

W@ httpi//local.. B2 | |F] utilisateur.., 2, = H
= B " http//localhost/testPhp/utilisateurs/add  ~ [
Nom d'utilisateur

Magenta

| Ajouter utilisateur |

Vérifier l'insertion dans la base de données du nouvel utilisateur.

Sur le méme principe que pour les utilisateurs, en respectant MVC :

Créer un controleur categories

Afficher la liste des catégories, et les utilisateurs correspondants
Créer la fonctionnalité d'ajout de catégorie

Créer la fonctionnalité de modification d'une catégorie existante
Créer la fonctionnalité de suppression d'une catégorie

Génération des classes métier

L'acces a la base de données doit-étre correctement configuré dans le fichier config/database.php.
Doctrine est installé en tant que Librairie.

Configuration de l'outil en ligne de commande

Créer le fichier doctrine-cli.php dans le dossier application, et modifier la variable APPPATH : partie siteURL

<?php

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57


http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=10
http://slamwiki2.kobject.net/_detail/slam4/php/codeigniter/user-add.png?id=slam4%3Aphp%3Acodeigniter%3Adoctrine

2026/02/04 01:57 9/19

Doctrine

// trailing slash is important!

define('APPPATH', 'c:/xampp/htdocs/siteURL/application/"');
define('BASEPATH', APPPATH);

define('ENVIRONMENT', 'production');

require APPPATH.'libraries/Doctrine.php’;
$doctrine = new Doctrine();

$helperSet = new \Symfony\Component\Console\Helper\HelperSet(array(
'db' => new

\Doctrine\DBAL\Tools\Console\Helper\ConnectionHelper($doctrine->em->getConnection()

),

‘em' => new
\Doctrine\ORM\Tools\Console\Helper\EntityManagerHelper($doctrine->em)
));

$cli = new \Symfony\Component\Console\Application('Doctrine Command Line Interface

(CodeIgniter integration by Joel Verhagen)', Doctrine\ORM\Version::VERSION);

$cli->setCatchExceptions(true);
$cli->setHelperSet($helperSet);
$cli->addCommands (array (
// DBAL Commands
new \Doctrine\DBAL\Tools\Console\Command\RunSqlCommand(),
new \Doctrine\DBAL\Tools\Console\Command\ImportCommand(),

// ORM Commands

new \Doctrine\ORM\Tools\Console\Command\ClearCache\MetadataCommand(),
new \Doctrine\ORM\Tools\Console\Command\ClearCache\ResultCommand(),

new \Doctrine\ORM\Tools\Console\Command\ClearCache\QueryCommand ()
new \Doctrine\ORM\Tools\Console\Command\SchemaTool\CreateCommand (

new \Doctrine\ORM\Tools\Console\Command\SchemaTool\UpdateCommand(),

new \Doctrine\ORM\Tools\Console\Command\SchemaTool\DropCommand(),

new \Doctrine\ORM\Tools\Console\Command\EnsureProductionSettingsCommand(),
new \Doctrine\ORM\Tools\Console\Command\ConvertDoctrinelSchemaCommand(),
new \Doctrine\ORM\Tools\Console\Command\GenerateRepositoriesCommand(),

new \Doctrine\ORM\Tools\Console\Command\GenerateEntitiesCommand(),

new \Doctrine\ORM\Tools\Console\Command\GenerateProxiesCommand(),
new \Doctrine\ORM\Tools\Console\Command\ConvertMappingCommand(),
new \Doctrine\ORM\Tools\Console\Command\RunDglCommand(),

new \Doctrine\ORM\Tools\Console\Command\ValidateSchemaCommand(),

));

$cli->run();
?>

Exécution en mode console

Lancer la console, et redéfinir la variable PATH pour permettre I'accés au programme php en ligne de

commande :

SET PATH=%PATH%; c:\xampp\php
echo %PATH%

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

Aller dans le dossier application du site, et exécuter :

php doctrine-cli.php

La sortie écran devrait produire le résultat suivant :

Doctrine Command Line Interface (CodeIgniter integration by Joel Verhagen) version
2.0.5

Usage:
[options] command [arguments]

Options:
--help -h Display this help message.
--quiet -q Do not output any message.
--verbose -v Increase verbosity of messages.
--version -V Display this program version.
--ansi -a Force ANSI output.

--no-interaction -n

Available commands:
help
list
dbal
:import
:run-sql
line.
orm
:convert-dl-schema
schema.
:convert-mapping
formats.
:ensure-production-settings
production environment.
:generate-entities
mapping information.
:generate-proxies
:generate-repositories
information.
:run-dql
line.
:validate-schema
orm:clear-cache
:metadata
drivers.
rquery
:result
orm:schema-tool
:create

Do not ask any interactive question.

Displays help for a command (?)
Lists commands

Import SQL file(s) directly to Database.

Executes arbitrary SQL directly from the command
Converts Doctrine 1.X schema into a Doctrine 2.X
Convert mapping information between supported
Verify that Doctrine is properly configured for a
Generate entity classes and method stubs from your

Generates proxy classes for entity classes.
Generate repository classes from your mapping

Executes arbitrary DQL directly from the command
Validate that the mapping files.
Clear all metadata cache of the various cache

Clear all query cache of the various cache drivers.
Clear result cache of the various cache drivers.

Processes the schema and either create it directly

on EntityManager Storage Connection or generate the SQL output.

:drop

Drop the complete database schema of EntityManager

Storage Connection or generate the corresponding SQL output.

:update

Processes the schema and either update the database

schema of EntityManager Storage Connection or generate the SQL output.

http://slamwiki2.kobject.net/

Printed on 2026/02/04 01:57



2026/02/04 01:57 11/19

Doctrine

Génération des metadonnées de mapping

Nous allons générer les metadonnées de mapping a partir de la base de données existante, au format YAML :

¢ Modifier le driver Doctrine dans le fichier Doctrine.php de application/libraries :

<?php

class Doctrine

{

// the Doctrine entity manager
public $em = null;

public function  construct()

{

APPPATH.

APPPATH.

APPPATH.

APPPATH.

// include our CodeIgniter application's database configuration
require APPPATH.'config/database.php';

// include Doctrine's fancy ClassLoader class

require once APPPATH.'libraries/Doctrine/Common/ClassLoader.php';

// load the Doctrine classes

$doctrineClassLoader = new \Doctrine\Common\ClassLoader('Doctrine',

'libraries');

$doctrineClasslLoader->register();

// load Symfony2 helpers

// Don't be alarmed, this is necessary for YAML mapping files
$symfonyClassLoader = new \Doctrine\Common\ClassLoader('Symfony"',
'libraries/Doctrine');

$symfonyClassLoader->register();

// load the entities

$entityClassLoader = new \Doctrine\Common\ClassLoader('Entities’,
'models"');

$entityClassLoader->register();

// load the proxy entities

$proxyClassLoader = new \Doctrine\Common\ClassLoader('Proxies',
'models');

$proxyClassLoader->register();

// set up the configuration
$config = new \Doctrine\ORM\Configuration;
if (ENVIRONMENT == 'development')
// set up simple array caching for development mode
$cache = new \Doctrine\Common\Cache\ArrayCache;
else
// set up caching with APC for production mode
$cache = new \Doctrine\Common\Cache\ApcCache;
$config->setMetadataCacheImpl($cache);
$config->setQueryCacheImpl($cache);

// set up proxy configuration
$config->setProxyDir (APPPATH. 'models/Proxies');

SlamWiki 2.1

- http://slamwiki2.kobject.net/



Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

$config->setProxyNamespace('Proxies');
// auto-generate proxy classes if we are in development mode
$config->setAutoGenerateProxyClasses (ENVIRONMENT == 'development');

// set up annotation driver
$yamlDriver = new

\Doctrine\ORM\Mapping\Driver\YamlDriver (APPPATH. 'models/Mappings');

$config->setMetadataDriverImpl($yamlDriver);
//%driverImpl = $config->newDefaultAnnotationDriver (APPPATH. 'models');
//$config->setMetadataDriverImpl($driverImpl);

// Database connection information
$connectionOptions = array(
'driver' => 'pdo _mysql',
'user' => $db['default']['username'],
'password' => $db['default']['password'],
'host' => $db['default']['hostname'],
'dbname' => $db['default']['database’]
I
// create the EntityManager
$em = \Doctrine\ORM\EntityManager::create($connectionOptions, $config);
// store it as a member, for use in our CodeIgniter controllers.
$this->em = $em;

e créer le dossier Mappings dans le dossier application/models
e Exécuter en mode console, dans le dossier application, la commande de génération des métadonnées en
YAML :

php doctrine-cli.php orm:convert-mapping --from-database yml models/Mappings

¢ |'application doit retourner quelque chose de ce genre :

Processing entity "Categories"
Processing entity "Droit"
Processing entity "Projet"
Processing entity "Utilisateurs"

Exporting "yml" mapping information to "C:\xampp\htdocs\doctrine CI\application\
models\Mappings"

Les fichier yml associés a chaque table de la BDD doivent étre présents dans le dossier
application/models/Mappings :

Utilisateurs:

type: entity

utilisateurs

fields:

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57



2026/02/04 01:57

13/19

Doctrine

id:

id: true

type: integer

unsigned: false

nullable: false

generator:

strategy: IDENTITY

prenom:

type: string

length: 50

fixed: false

nullable: true
dateinscription:

type: date

nullable: true

column: dateInscription
age:

type: integer

unsigned: false

nullable: true

nom:
type: string
length: 50

fixed: false
nullable: true
adulte:
type: boolean
nullable: false
manyToMany:
iddroit:
targetEntity: Droit
cascade: { }
mappedBy: null
inversedBy: idutilisateur
joinTable:
name: utilisateur droit
joinColumns:

name: idUtilisateur

referencedColumnName:

inverseJoinColumns:

name: idDroit

referencedColumnName:
orderBy: null
oneToOne:
categorie:

targetEntity: Categories
cascade: { }
mappedBy: null
inversedBy: null
joinColumns:
categorie id:
referencedColumnName:
orphanRemoval: false
lifecycleCallbacks: { }

id

id

id

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

Génération des classes

Nous allons maintenant générer les classes a partir des données de mapping : Avant la génération, vérifier les
données, et procédez a d'éventuelles corrections.

e en mode console, exécuter l'instruction suivante :

php doctrine-cli.php orm:generate-entities --generate-annotations=true models

L'exécution devrait retourner un résultat semblable a celui-ci :

Processing entity "Categories"
Processing entity "Droit"
Processing entity "Projet"
Processing entity "Utilisateurs"

Entity classes generated to "C:\xampp\htdocs\doctrine CI\application\models"

Les classes sont générées dans application/models :

<?php

use Doctrine\ORM\Mapping as ORM;

/**
* Utilisateurs
*/
class Utilisateurs

{

/**
* @var integer $id
*/

private $id;

/**
* @var string $prenom
*/

private $prenom;

/**
* @var date $dateinscription
*/

private $dateinscription;

/**
* @var integer $age

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57



2026/02/04 01:57 15/19 Doctrine

*/
private $age;

/**
* @var string $nom
*/

private $nom;

/**
* @var boolean $adulte
*/

private $adulte;

/**
* @var Categories
*/

private $categorie;

/**
* @var \Doctrine\Common\Collections\ArrayCollection
*/

private $iddroit;

public function  construct()

{
$this->iddroit = new \Doctrine\Common\Collections\ArrayCollection();
}
/**
* Get id

*

* @return integer

*/
public function getId()
{
return $this->id;
}
/**

* Set prenom
*

* @param string $prenom

* @return Utilisateurs

*/
public function setPrenom($prenom)

{
$this->prenom = $prenom;
return $this;

}

/**

* Get prenom
3

* @return string
*/
public function getPrenom()

{

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

return $this->prenom;

* Set dateinscription

* @param date $dateinscription

* @return Utilisateurs

*/
public function setDateinscription($dateinscription)

{
$this->dateinscription = $dateinscription;
return $this;

}

/**

* Get dateinscription
%

* @return date

*/
public function getDateinscription()
{
return $this->dateinscription;
}
/**
* Set age

* @param integer $age
* @return Utilisateurs
*/
public function setAge($age)
{
$this->age = $age;
return $this;

/**
* Get age
*

* @return integer

*/
public function getAge()
{
return $this->age;
}
/**
* Set nom

* @param string $nom

* @return Utilisateurs

*/

public function setNom($nom)

{

$this->nom = $nom;

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57



2026/02/04 01:57 17/19 Doctrine

return $this;

}

/**
* Get nom
*

* @return string

*/

public function getNom()
{

return $this->nom;

}
/**

* Set adulte

*

* @param boolean $adulte

* @return Utilisateurs

*/

public function setAdulte($adulte)

{
$this->adulte = $adulte;
return $this;

}

/**

* Get adulte
*

* @return boolean

*/
public function getAdulte()
{
return $this->adulte;
}
/**

* Set categorie
*

* @param Categories $categorie

* @return Utilisateurs

*/

public function setCategorie(\Categories $categorie = null)

{
$this->categorie = $categorie;
return $this;

}

/**

* Get categorie
*

* @return Categories
*/
public function getCategorie()

{

return $this->categorie;

}

SlamWiki 2.1 - http://slamwiki2.kobject.net/



Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

/**

* Add iddroit
*

* @param Droit $iddroit

* @return Utilisateurs

*/

public function addDroit(\Droit $iddroit)

{
$this->iddroit[] = $iddroit;
return $this;

}

/**

* Get iddroit
%

* @return Doctrine\Common\Collections\Collection
*/

public function getIddroit()

{

return $this->iddroit;

}

o Apres génération, remettez le driver sur la position Annotations dans le fichier Doctrine.php :

$driverImpl = $config->newDefaultAnnotationDriver (APPPATH. 'models');
$config->setMetadataDriverImpl($driverImpl);

Sérialisation, session php

Pour permettre la sérialisation d'instances de models en session, il est nécessaire de respecter certaines étapes

Au niveau des models

Sur-définir éventuellement la méthode magique _sleep des classes, pour définir les membres a sérialiser :

public function sleep(){
return
array('id', 'login', 'password', 'nom', 'prenom', 'mail', 'monde', 'groupe');

}

S'il faut également prévoir la sérialisation des objets dépendants, préciser CASCADE="ALL" et FETCH="EAGER"
sur les annotations concernées :

Exemple : sérialisation du groupe de ['utilisateur :

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57



2026/02/04 01:57 19/19 Doctrine

/**
* @var \Groupe
*
* @ManyToOne(targetEntity="Groupe",cascade={"all"}, fetch="EAGER")
* @JoinColumns ({
* @JoinColumn(name="groupe id", referencedColumnName="id")
* 1)
*/

private $groupe;

Sauvegarde en session

Utilisation de detach :

public function save(){
$user=DA0\getOne("Utilisateur", 1);
$this->doctrine->em->detach($user);
$this->session->set userdata("user", $user);
echo $user->getNom()." enregistré";

restauration depuis la session

Utilisation de merge :

public function load(){
var _dump($this->session->all userdata());
$user=$this->session->userdata("user");
$user=$this->doctrine->em->merge($user);
var _dump($user);

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

Last update: 2019/08/31 14:21

SlamWiki 2.1 - http://slamwiki2.kobject.net/


http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

	Doctrine
	Installation
	Création des classes métier
	Le model utilisateur
	Le model categorie
	Chargement des models
	Gestion des utilisateurs
	Contrôleur utilisateurs
	Vues
	Liste des utilisateurs


	Ajout d'utilisateur
	Modification du contrôleur
	Ajout des vues


	Génération des classes métier
	Configuration de l'outil en ligne de commande
	Exécution en mode console
	Génération des metadonnées de mapping
	Génération des classes

	Sérialisation, session php
	Au niveau des models
	Sauvegarde en session
	restauration depuis la session



