
2026/02/04 01:57 1/19 Doctrine

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Doctrine

<
Javascript >>

Introduction à CodeIgniter1.
Helpers2.
Bibliothèques3.
Sessions CodeIgniter4.
Validation des formulaires5.
ORM IgnitedRecord6.
Doctrine7.
Javascript et codeIgniter8.

Doctrine est également un ORM qui peut être associé à CodeIgniter, il est beaucoup plus puissant, et plus
complet.

Site de référence Doctrine
Documentation
Téléchargement DoctrineORM-2.2.1-full

Installation

Doctrine est installé en tant que bibliothèque dans codeIgniter.
Créer un nouveau projet PHP, installer à nouveau CodeIgniter.
Avec l'archive Doctrine :

Dézipper l'archive.
Copier le dossier Doctrine de l'archive dans le dossier application/libraries.

Créer une classe Doctrine.php dans le dossier libraries :

|h application/libraries/Doctrine.php

<?php
class Doctrine
{
 // the Doctrine entity manager
 public $em = null;

 public function __construct()
 {
 // include our CodeIgniter application's database configuration
 require APPPATH.'config/database.php';
 // include Doctrine's fancy ClassLoader class
 require_once APPPATH.'libraries/Doctrine/Common/ClassLoader.php';

 // load the Doctrine classes
 $doctrineClassLoader = new \Doctrine\Common\ClassLoader('Doctrine',
APPPATH.'libraries');
 $doctrineClassLoader->register();

 // load Symfony2 helpers

http://slamwiki2.kobject.net/doku.php?id=slam4:php:codeigniter:orm
http://slamwiki2.kobject.net/doku.php?id=slam4:php:codeigniter:javascript
http://slamwiki2.kobject.net/slam4/php/codeigniter
http://slamwiki2.kobject.net/slam4/php/codeigniter/helpers
http://slamwiki2.kobject.net/slam4/php/codeigniter/libraries
http://slamwiki2.kobject.net/slam4/php/codeigniter/session
http://slamwiki2.kobject.net/slam4/php/codeigniter/validation
http://slamwiki2.kobject.net/slam4/php/codeigniter/orm
http://slamwiki2.kobject.net/slam4/php/codeigniter/javascript
http://www.doctrine-project.org/
http://docs.doctrine-project.org/projects/doctrine-orm/en/2.0.x/index.html
http://www.doctrine-project.org/downloads/DoctrineORM-2.2.1-full.tar.gz
http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=0

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57

 // Don't be alarmed, this is necessary for YAML mapping files
 $symfonyClassLoader = new \Doctrine\Common\ClassLoader('Symfony',
APPPATH.'libraries/Doctrine');
 $symfonyClassLoader->register();

 // load the entities
 $entityClassLoader = new \Doctrine\Common\ClassLoader('Entities',
APPPATH.'models');
 $entityClassLoader->register();

 // load the proxy entities
 $proxyClassLoader = new \Doctrine\Common\ClassLoader('Proxies',
APPPATH.'models');
 $proxyClassLoader->register();

 // set up the configuration
 $config = new \Doctrine\ORM\Configuration;

 if(ENVIRONMENT == 'development')
 // set up simple array caching for development mode
 $cache = new \Doctrine\Common\Cache\ArrayCache;
 else
 // set up caching with APC for production mode
 $cache = new \Doctrine\Common\Cache\ApcCache;
 $config->setMetadataCacheImpl($cache);
 $config->setQueryCacheImpl($cache);

 // set up proxy configuration
 $config->setProxyDir(APPPATH.'models/Proxies');
 $config->setProxyNamespace('Proxies');

 // auto-generate proxy classes if we are in development mode
 $config->setAutoGenerateProxyClasses(ENVIRONMENT == 'development');

 // set up annotation driver
 //$yamlDriver = new
\Doctrine\ORM\Mapping\Driver\YamlDriver(APPPATH.'models/Mappings');
 $driverImpl = $config->newDefaultAnnotationDriver(APPPATH.'models');
 $config->setMetadataDriverImpl($driverImpl);

 // Database connection information
 $connectionOptions = array(
 'driver' => 'pdo_mysql',
 'user' => $db['default']['username'],
 'password' => $db['default']['password'],
 'host' => $db['default']['hostname'],
 'dbname' => $db['default']['database']
);

 // create the EntityManager
 $em = \Doctrine\ORM\EntityManager::create($connectionOptions,
$config);

 // store it as a member, for use in our CodeIgniter controllers.
 $this->em = $em;
 }

http://www.php.net/array

2026/02/04 01:57 3/19 Doctrine

SlamWiki 2.1 - http://slamwiki2.kobject.net/

}
?>

Doctrine doit être ensuite chargé automatiquement avec autoload.php :

$autoload['libraries'] = array('database','doctrine');

Le chargement de la bibliothèque database est indispensable

Logiquement, Doctrine est prêt à fonctionner.
Vérifier que votre page d'accueil ne produit pas d'erreurs : http://localhost/siteURL/

Création des classes métier

Une classe métier correspond à la notion d'entity dans Doctrine.

Considérons la base de données suivante :

La base de données sera composée de 2 entities: utilisateur et categorie. La relation de type CIF entre
utilisateurs et categories peut s'exprimer de la façon suivante :

Chaque utilisateur appartient à 1 catégorie (manyToOne)
Dans chaque categorie, on peut compter de 0 à n utilisateurs (oneToMany)

Le model utilisateur

Dans le dossier application/models :

créer le fichier utilisateur.php
générer ensuite les accesseurs sur les membres
créer un constructeur sans paramètres

|h application/models/utilisateur.php

<?php
/**
 * @Entity
 * @Table(name="utilisateurs")
 */
class Utilisateur {
 /**
 * @Id @Column(type="integer")
 * @GeneratedValue
 */
 private $id;

http://www.php.net/array
http://slamwiki2.kobject.net/_detail/slam4/php/codeigniter/models-utilisateurs-categories.png?id=slam4%3Aphp%3Acodeigniter%3Adoctrine
http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=2

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57

 /**
 * @Column(type="string")
 * @var string
 */
 private $nom;
 /**
 * @Column(type="string")
 * @var string
 */
 private $prenom;
 /**
 * @Column(type="integer")
 * @var integer
 */
 private $age;
 /**
 * @Column(type="boolean")
 * @var string
 */
 private $adulte;
 /**
 * @ManyToOne(targetEntity="Categorie")
 * @JoinColumn(name="categorie_id", referencedColumnName="id")
 */
 private $categorie;
}
?>

Un model est un fichier contenant une classe dont le nom commence par une majuscule.
Le nom du fichier doit être le même que celui de la classe, mais en minuscule.
Le fichier doit être enregistré dans le dossier application/models/
Doctrine peut utiliser plusieurs systèmes pour définir les modèles :

avec annotations dans le code php comme dans l'exemple
avec fichiers xml
avec fichiers yaml

Le model categorie

Dans le dossier application/models :

créer le fichier categorie.php
générer ensuite les accesseurs sur les membres
créer un constructeur sans paramètres

|h application/models/categorie.php

<?php
/**
 * @Entity
 * @Table(name="categories")
 */
class Categorie{

http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=3

2026/02/04 01:57 5/19 Doctrine

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 /**
 * @Id @Column(type="integer")
 * @GeneratedValue
 */
 private $id;
 /**
 * @Column(type="string")
 * @var string
 */
 private $nom;

 /**
 * @OneToMany(targetEntity="Utilisateur",mappedBy="categorie")
 */
 private $utilisateurs;
}
?>

Chargement des models

Le chargement peut être automatique, par le biais de application/config/autoload.php

$autoload['model'] = array('categorie','utilisateur');

ou bien se faire dans un contrôleur :

$this->load->model('utilisateur');

Il est nécessaire de créer à la main le dossier Proxies dans application/models pour permettre la génération
à la volée des classes de mapping

Gestion des utilisateurs

Contrôleur utilisateurs

Ajouter un contrôleur utilisateurs dans controllers :

la méthode all charge tous les utilisateurs, et leur catégorie correspondante.
Elle appelle ensuite la vue v_utilisateurs et lui passe les utilisateurs chargés (users)

|h application/controllers/utilisateurs.php

<?php
class Utilisateurs extends CI_Controller{
 public function all(){
 $query = $this->doctrine->em->createQuery("SELECT u FROM Utilisateur u
join u.categorie c");
 $users = $query->getResult();
 $this->load->view('v_utilisateurs',array('utilisateurs'=>$users));
 }
}

http://www.php.net/array
http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=6
http://www.php.net/array

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57

?>

Vues

Liste des utilisateurs

Créer la vue v_utilisateurs pour afficher la liste des utilisateurs : La variable $utilisateurs est récupérée par la
méthode all du contrôleur utilisateurs

|h application/views/v_utilisateurs.php

<?php
foreach ($utilisateurs as $user){
 echo($user->getNom()." (".$user->getCategorie()->getNom().")
");
}
?>

Tester en allant à l'adresse /utilisateurs/all/

Ajout d'utilisateur

Modification du contrôleur

Modifier le contrôleur utilisateurs :

La méthode add permet d'afficher un formulaire v_utilisateur_add permettant d'ajouter un utilisateur
en saisissant son nom.
La méthode submit_add effectue la validation du formulaire en cas de succès de la validation puis
appelle la vue v_success_add

|h application/controllers/utilisateurs.php

<?php
class Utilisateurs extends CI_Controller{
 public function add(){

http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=7
http://slamwiki2.kobject.net/_detail/slam4/php/codeigniter/users-list.png?id=slam4%3Aphp%3Acodeigniter%3Adoctrine
http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=8

2026/02/04 01:57 7/19 Doctrine

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 $this->load->helper(array('form', 'url'));

 $this->load->library('form_validation');

 $this->form_validation->set_rules('username', 'Username',
'trim|required|min_length[5]|max_length[12]|xss_clean');
 if ($this->form_validation->run() == FALSE)
 {
 $this->load->view('v_utilisateur_add');
 }
 else
 {
 $this->submit_add($_POST["username"]);
 }
 }

 public function submit_add($name){
 $user = new Utilisateur();
 $user->setNom($name);
 $this->doctrine->em->persist($user);
 $this->doctrine->em->flush();
 }

 public function all(){
 $query = $this->doctrine->em->createQuery("SELECT u FROM Utilisateur u
join u.categorie c");
 $users = $query->getResult();
 $this->load->view('v_utilisateurs',array('utilisateurs'=>$users));
 }
}
?>

Ajout des vues

La vue v_utilisateur_add sera appelée par l'intermédiaire du contrôleur utilisateurs/add

|h application/views/v_utilisateur_add.php

<html>
<head>
<title>Ajout utilisateur</title>
</head>
<body>

<?php echo validation_errors(); ?>

<?php echo form_open('utilisateurs/add/'); ?>

<h5>Nom d'utilisateur</h5>
<input type="text" name="username" value="<?php echo set_value('username');
?>" size="50" />

<div><input type="submit" value="Ajouter utilisateur" /></div>

http://www.php.net/array
http://www.php.net/flush
http://www.php.net/array
http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=9

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57

</form>

</body>
</html>

La vue v_success_add sera appelée après soumission du formulaire par le contrôleur
utilisateurs/submit_add

|h application/views/v_success_add.php

<?php
echo($user->nom." ajouté");
?>

Tester en allant à l'adresse : http://localhost/testPhp/utilisateurs/add/

Vérifier l'insertion dans la base de données du nouvel utilisateur.

Sur le même principe que pour les utilisateurs, en respectant MVC :

Créer un contrôleur categories
Afficher la liste des catégories, et les utilisateurs correspondants
Créer la fonctionnalité d'ajout de catégorie
Créer la fonctionnalité de modification d'une catégorie existante
Créer la fonctionnalité de suppression d'une catégorie

Génération des classes métier

L'accès à la base de données doit-être correctement configuré dans le fichier config/database.php.
Doctrine est installé en tant que Librairie.

Configuration de l'outil en ligne de commande

Créer le fichier doctrine-cli.php dans le dossier application, et modifier la variable APPPATH : partie siteURL

<?php

http://slamwiki2.kobject.net/_export/code/slam4/php/codeigniter/doctrine?codeblock=10
http://slamwiki2.kobject.net/_detail/slam4/php/codeigniter/user-add.png?id=slam4%3Aphp%3Acodeigniter%3Adoctrine

2026/02/04 01:57 9/19 Doctrine

SlamWiki 2.1 - http://slamwiki2.kobject.net/

// trailing slash is important!
define('APPPATH', 'c:/xampp/htdocs/siteURL/application/');
define('BASEPATH', APPPATH);
define('ENVIRONMENT', 'production');

require APPPATH.'libraries/Doctrine.php';

$doctrine = new Doctrine();

$helperSet = new \Symfony\Component\Console\Helper\HelperSet(array(
 'db' => new
\Doctrine\DBAL\Tools\Console\Helper\ConnectionHelper($doctrine->em->getConnection()
),
 'em' => new
\Doctrine\ORM\Tools\Console\Helper\EntityManagerHelper($doctrine->em)
));

$cli = new \Symfony\Component\Console\Application('Doctrine Command Line Interface
(CodeIgniter integration by Joel Verhagen)', Doctrine\ORM\Version::VERSION);
$cli->setCatchExceptions(true);
$cli->setHelperSet($helperSet);
$cli->addCommands(array(
 // DBAL Commands
 new \Doctrine\DBAL\Tools\Console\Command\RunSqlCommand(),
 new \Doctrine\DBAL\Tools\Console\Command\ImportCommand(),

 // ORM Commands
 new \Doctrine\ORM\Tools\Console\Command\ClearCache\MetadataCommand(),
 new \Doctrine\ORM\Tools\Console\Command\ClearCache\ResultCommand(),
 new \Doctrine\ORM\Tools\Console\Command\ClearCache\QueryCommand(),
 new \Doctrine\ORM\Tools\Console\Command\SchemaTool\CreateCommand(),
 new \Doctrine\ORM\Tools\Console\Command\SchemaTool\UpdateCommand(),
 new \Doctrine\ORM\Tools\Console\Command\SchemaTool\DropCommand(),
 new \Doctrine\ORM\Tools\Console\Command\EnsureProductionSettingsCommand(),
 new \Doctrine\ORM\Tools\Console\Command\ConvertDoctrine1SchemaCommand(),
 new \Doctrine\ORM\Tools\Console\Command\GenerateRepositoriesCommand(),
 new \Doctrine\ORM\Tools\Console\Command\GenerateEntitiesCommand(),
 new \Doctrine\ORM\Tools\Console\Command\GenerateProxiesCommand(),
 new \Doctrine\ORM\Tools\Console\Command\ConvertMappingCommand(),
 new \Doctrine\ORM\Tools\Console\Command\RunDqlCommand(),
 new \Doctrine\ORM\Tools\Console\Command\ValidateSchemaCommand(),

));
$cli->run();
?>

Exécution en mode console

Lancer la console, et redéfinir la variable PATH pour permettre l'accès au programme php en ligne de
commande :

SET PATH=%PATH%;c:\xampp\php
echo %PATH%

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57

Aller dans le dossier application du site, et exécuter :

php doctrine-cli.php

La sortie écran devrait produire le résultat suivant :

Doctrine Command Line Interface (CodeIgniter integration by Joel Verhagen) version
2.0.5

Usage:
 [options] command [arguments]

Options:
 --help -h Display this help message.
 --quiet -q Do not output any message.
 --verbose -v Increase verbosity of messages.
 --version -V Display this program version.
 --ansi -a Force ANSI output.
 --no-interaction -n Do not ask any interactive question.

Available commands:
 help Displays help for a command (?)
 list Lists commands
dbal
 :import Import SQL file(s) directly to Database.
 :run-sql Executes arbitrary SQL directly from the command
line.
orm
 :convert-d1-schema Converts Doctrine 1.X schema into a Doctrine 2.X
schema.
 :convert-mapping Convert mapping information between supported
formats.
 :ensure-production-settings Verify that Doctrine is properly configured for a
production environment.
 :generate-entities Generate entity classes and method stubs from your
mapping information.
 :generate-proxies Generates proxy classes for entity classes.
 :generate-repositories Generate repository classes from your mapping
information.
 :run-dql Executes arbitrary DQL directly from the command
line.
 :validate-schema Validate that the mapping files.
orm:clear-cache
 :metadata Clear all metadata cache of the various cache
drivers.
 :query Clear all query cache of the various cache drivers.
 :result Clear result cache of the various cache drivers.
orm:schema-tool
 :create Processes the schema and either create it directly
on EntityManager Storage Connection or generate the SQL output.
 :drop Drop the complete database schema of EntityManager
Storage Connection or generate the corresponding SQL output.
 :update Processes the schema and either update the database
schema of EntityManager Storage Connection or generate the SQL output.

2026/02/04 01:57 11/19 Doctrine

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Génération des metadonnées de mapping

Nous allons générer les metadonnées de mapping à partir de la base de données existante, au format YAML :

Modifier le driver Doctrine dans le fichier Doctrine.php de application/libraries :

<?php
class Doctrine
{
 // the Doctrine entity manager
 public $em = null;

 public function __construct()
 {
 // include our CodeIgniter application's database configuration
 require APPPATH.'config/database.php';
 // include Doctrine's fancy ClassLoader class
 require_once APPPATH.'libraries/Doctrine/Common/ClassLoader.php';

 // load the Doctrine classes
 $doctrineClassLoader = new \Doctrine\Common\ClassLoader('Doctrine',
APPPATH.'libraries');
 $doctrineClassLoader->register();
 // load Symfony2 helpers
 // Don't be alarmed, this is necessary for YAML mapping files
 $symfonyClassLoader = new \Doctrine\Common\ClassLoader('Symfony',
APPPATH.'libraries/Doctrine');
 $symfonyClassLoader->register();

 // load the entities
 $entityClassLoader = new \Doctrine\Common\ClassLoader('Entities',
APPPATH.'models');
 $entityClassLoader->register();

 // load the proxy entities
 $proxyClassLoader = new \Doctrine\Common\ClassLoader('Proxies',
APPPATH.'models');
 $proxyClassLoader->register();

 // set up the configuration
 $config = new \Doctrine\ORM\Configuration;
 if(ENVIRONMENT == 'development')
 // set up simple array caching for development mode
 $cache = new \Doctrine\Common\Cache\ArrayCache;
 else
 // set up caching with APC for production mode
 $cache = new \Doctrine\Common\Cache\ApcCache;
 $config->setMetadataCacheImpl($cache);
 $config->setQueryCacheImpl($cache);

 // set up proxy configuration
 $config->setProxyDir(APPPATH.'models/Proxies');

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57

 $config->setProxyNamespace('Proxies');
 // auto-generate proxy classes if we are in development mode
 $config->setAutoGenerateProxyClasses(ENVIRONMENT == 'development');

 // set up annotation driver
 $yamlDriver = new
\Doctrine\ORM\Mapping\Driver\YamlDriver(APPPATH.'models/Mappings');
 $config->setMetadataDriverImpl($yamlDriver);
 //$driverImpl = $config->newDefaultAnnotationDriver(APPPATH.'models');
 //$config->setMetadataDriverImpl($driverImpl);

 // Database connection information
 $connectionOptions = array(
 'driver' => 'pdo_mysql',
 'user' => $db['default']['username'],
 'password' => $db['default']['password'],
 'host' => $db['default']['hostname'],
 'dbname' => $db['default']['database']
);
 // create the EntityManager
 $em = \Doctrine\ORM\EntityManager::create($connectionOptions, $config);
 // store it as a member, for use in our CodeIgniter controllers.
 $this->em = $em;
 }
}
?>

créer le dossier Mappings dans le dossier application/models
Exécuter en mode console, dans le dossier application, la commande de génération des métadonnées en
YAML :

php doctrine-cli.php orm:convert-mapping --from-database yml models/Mappings

L'application doit retourner quelque chose de ce genre :

Processing entity "Categories"
Processing entity "Droit"
Processing entity "Projet"
Processing entity "Utilisateurs"

Exporting "yml" mapping information to "C:\xampp\htdocs\doctrine_CI\application\
models\Mappings"

Les fichier yml associés à chaque table de la BDD doivent être présents dans le dossier
application/models/Mappings :

Utilisateurs:
 type: entity
 table: utilisateurs
 fields:

2026/02/04 01:57 13/19 Doctrine

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 id:
 id: true
 type: integer
 unsigned: false
 nullable: false
 generator:
 strategy: IDENTITY
 prenom:
 type: string
 length: 50
 fixed: false
 nullable: true
 dateinscription:
 type: date
 nullable: true
 column: dateInscription
 age:
 type: integer
 unsigned: false
 nullable: true
 nom:
 type: string
 length: 50
 fixed: false
 nullable: true
 adulte:
 type: boolean
 nullable: false
 manyToMany:
 iddroit:
 targetEntity: Droit
 cascade: { }
 mappedBy: null
 inversedBy: idutilisateur
 joinTable:
 name: utilisateur_droit
 joinColumns:
 -
 name: idUtilisateur
 referencedColumnName: id
 inverseJoinColumns:
 -
 name: idDroit
 referencedColumnName: id
 orderBy: null
 oneToOne:
 categorie:
 targetEntity: Categories
 cascade: { }
 mappedBy: null
 inversedBy: null
 joinColumns:
 categorie_id:
 referencedColumnName: id
 orphanRemoval: false
 lifecycleCallbacks: { }

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57

Génération des classes

Nous allons maintenant générer les classes à partir des données de mapping : Avant la génération, vérifier les
données, et procédez à d'éventuelles corrections.

en mode console, exécuter l'instruction suivante :

php doctrine-cli.php orm:generate-entities --generate-annotations=true models

L'exécution devrait retourner un résultat semblable à celui-ci :

Processing entity "Categories"
Processing entity "Droit"
Processing entity "Projet"
Processing entity "Utilisateurs"

Entity classes generated to "C:\xampp\htdocs\doctrine_CI\application\models"

Les classes sont générées dans application/models :

<?php

use Doctrine\ORM\Mapping as ORM;

/**
 * Utilisateurs
 */
class Utilisateurs
{
 /**
 * @var integer $id
 */
 private $id;

 /**
 * @var string $prenom
 */
 private $prenom;

 /**
 * @var date $dateinscription
 */
 private $dateinscription;

 /**
 * @var integer $age

2026/02/04 01:57 15/19 Doctrine

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 */
 private $age;

 /**
 * @var string $nom
 */
 private $nom;

 /**
 * @var boolean $adulte
 */
 private $adulte;

 /**
 * @var Categories
 */
 private $categorie;

 /**
 * @var \Doctrine\Common\Collections\ArrayCollection
 */
 private $iddroit;

 public function __construct()
 {
 $this->iddroit = new \Doctrine\Common\Collections\ArrayCollection();
 }
 /**
 * Get id
 *
 * @return integer
 */
 public function getId()
 {
 return $this->id;
 }

 /**
 * Set prenom
 *
 * @param string $prenom
 * @return Utilisateurs
 */
 public function setPrenom($prenom)
 {
 $this->prenom = $prenom;
 return $this;
 }

 /**
 * Get prenom
 *
 * @return string
 */
 public function getPrenom()
 {

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57

 return $this->prenom;
 }

 /**
 * Set dateinscription
 *
 * @param date $dateinscription
 * @return Utilisateurs
 */
 public function setDateinscription($dateinscription)
 {
 $this->dateinscription = $dateinscription;
 return $this;
 }

 /**
 * Get dateinscription
 *
 * @return date
 */
 public function getDateinscription()
 {
 return $this->dateinscription;
 }

 /**
 * Set age
 *
 * @param integer $age
 * @return Utilisateurs
 */
 public function setAge($age)
 {
 $this->age = $age;
 return $this;
 }

 /**
 * Get age
 *
 * @return integer
 */
 public function getAge()
 {
 return $this->age;
 }

 /**
 * Set nom
 *
 * @param string $nom
 * @return Utilisateurs
 */
 public function setNom($nom)
 {
 $this->nom = $nom;

2026/02/04 01:57 17/19 Doctrine

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 return $this;
 }

 /**
 * Get nom
 *
 * @return string
 */
 public function getNom()
 {
 return $this->nom;
 }

 /**
 * Set adulte
 *
 * @param boolean $adulte
 * @return Utilisateurs
 */
 public function setAdulte($adulte)
 {
 $this->adulte = $adulte;
 return $this;
 }

 /**
 * Get adulte
 *
 * @return boolean
 */
 public function getAdulte()
 {
 return $this->adulte;
 }

 /**
 * Set categorie
 *
 * @param Categories $categorie
 * @return Utilisateurs
 */
 public function setCategorie(\Categories $categorie = null)
 {
 $this->categorie = $categorie;
 return $this;
 }

 /**
 * Get categorie
 *
 * @return Categories
 */
 public function getCategorie()
 {
 return $this->categorie;
 }

Last update: 2019/08/31 14:21 slam4:php:codeigniter:doctrine http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

http://slamwiki2.kobject.net/ Printed on 2026/02/04 01:57

 /**
 * Add iddroit
 *
 * @param Droit $iddroit
 * @return Utilisateurs
 */
 public function addDroit(\Droit $iddroit)
 {
 $this->iddroit[] = $iddroit;
 return $this;
 }

 /**
 * Get iddroit
 *
 * @return Doctrine\Common\Collections\Collection
 */
 public function getIddroit()
 {
 return $this->iddroit;
 }
}

Après génération, remettez le driver sur la position Annotations dans le fichier Doctrine.php :

$driverImpl = $config->newDefaultAnnotationDriver(APPPATH.'models');
$config->setMetadataDriverImpl($driverImpl);

Sérialisation, session php

Pour permettre la sérialisation d'instances de models en session, il est nécessaire de respecter certaines étapes
:

Au niveau des models

Sur-définir éventuellement la méthode magique _sleep des classes, pour définir les membres à sérialiser :

 public function __sleep(){
 return
array('id','login','password','nom','prenom','mail','monde','groupe');
 }

S'il faut également prévoir la sérialisation des objets dépendants, préciser CASCADE=“ALL” et FETCH=“EAGER”
sur les annotations concernées :

Exemple : sérialisation du groupe de l'utilisateur :

2026/02/04 01:57 19/19 Doctrine

SlamWiki 2.1 - http://slamwiki2.kobject.net/

 /**
 * @var \Groupe
 *
 * @ManyToOne(targetEntity="Groupe",cascade={"all"}, fetch="EAGER")
 * @JoinColumns({
 * @JoinColumn(name="groupe_id", referencedColumnName="id")
 * })
 */
 private $groupe;

Sauvegarde en session

Utilisation de detach :

 public function save(){
 $user=DAO\getOne("Utilisateur", 1);
 $this->doctrine->em->detach($user);
 $this->session->set_userdata("user",$user);
 echo $user->getNom()." enregistré";
 }

restauration depuis la session

Utilisation de merge :

 public function load(){
 var_dump($this->session->all_userdata());
 $user=$this->session->userdata("user");
 $user=$this->doctrine->em->merge($user);
 var_dump($user);
 }

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

Last update: 2019/08/31 14:21

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/php/codeigniter/doctrine

	Doctrine
	Installation
	Création des classes métier
	Le model utilisateur
	Le model categorie
	Chargement des models
	Gestion des utilisateurs
	Contrôleur utilisateurs
	Vues
	Liste des utilisateurs

	Ajout d'utilisateur
	Modification du contrôleur
	Ajout des vues

	Génération des classes métier
	Configuration de l'outil en ligne de commande
	Exécution en mode console
	Génération des metadonnées de mapping
	Génération des classes

	Sérialisation, session php
	Au niveau des models
	Sauvegarde en session
	restauration depuis la session

