2026/02/03 22:15 1/6 Controleurs

Controleurs

Un controleur Phalcon est une classe héritant de \Phalcon\Mvc\Controller, et dont les méthodes publiques sont
qualifiées d'actions, accessibles par l'url. Les actions sont responsables de I'interprétation des requétes et de la
création de la réponse.

-- URLs

Lors de l'accés a I'URL http://localhost/blog/posts/show/2012/the-post-title, Phalcon décompose chaque
partie de I'url selon le principe suivant :

Root de I'application |blog
Controller posts
Action show
Paramétre 2012
Parameétre the-post-title

Les controleurs doivent avoir le suffixe Controller et les actions le suffixe Action

Exemple :

<?php
class PostsController extends \Phalcon\Mvc\Controller{
public function indexAction(){
}
public function showAction($year, $postTitle){
}
}

URL d'acces a l'action :

¢ /posts/show/2015/elections

Les paramétres de I'action peuvent étre facultatifs s'ils ont une valeur par défaut :

<?php
class PostsController extends \Phalcon\Mvc\Controller{
public function indexAction(){

}

public function showAction($year=2015, $postTitle='some default title'){

SlamWiki 2.1 - http://slamwiki2.kobject.net/

https://api.phalconphp.com/class/Phalcon/Mvc/Controller.html

Last update: 2019/08/31 14:21 slam4:php:phalcon:controllers http://slamwiki2.kobject.net/slam4/php/phalcon/controllers

}

URLs d'acces a l'action :
¢ /posts/show/2015/elections

¢ /posts/show/2015/
e /posts/show/

-- Redirections

Une action peut-étre redirigée vers une autre via la redirection :
Exemple : Redirection vers I'action Inscription du contréleur Users si I'utilisateur n'est pas autorisé a accéder a
I'action show du contréleur Posts

<?php
class PostsController extends \Phalcon\Mvc\Controller{

public function indexAction(){

}

public function showAction($year, $postTitle){
$this->flash->error("Vous n'avez pas l'autorisation d'accéder a cette
zone");

// Redirection vers une autre action

$this->dispatcher->forward(array(
"controller" => "users",
"action" => "inscription"

));

<?php
class UsersController extends \Phalcon\Mvc\Controller{

public function indexAction(){

}

public function signinAction(){

}

http://slamwiki2.kobject.net/ Printed on 2026/02/03 22:15

2026/02/03 22:15 3/6 Controleurs

-- Initialisation des controleurs

La classe Phalcon Phalcon\Mvc\Controller dispose d'une méthode initialize, invoquée avant tout appel d'action.

<?php
class PostsController extends \Phalcon\Mvc\Controller
{
public $settings;
public function initialize()
{
$this->settings = array(
"mySetting" => "value"
);
}
public function saveAction()
{
if ($this->settings["mySetting"] == "value") {
/] ..
}
}
}

La méthode initialize n'est appelée que si I'événement ‘beforeExecuteRoute’ est exécuté avec succes, pour
éviter qu'une partie de la logique de I'application ne soit exécutée sans autorisation.

-- Injection de services

Les contréleurs ont acces par défaut a I'injecteur de services $di défini dans le fichier bootstrap (index.php ou
services.php) :

<?php

$di = new Phalcon\DI();
$di->set('storage', function() {

return new Storage('/some/directory');
}, true);

Acces au service injecté dans un contrbleur :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://docs.phalconphp.com/en/latest/api/Phalcon_Mvc_Controller.html

Last update: 2019/08/31 14:21 slam4:php:phalcon:controllers http://slamwiki2.kobject.net/slam4/php/phalcon/controllers

<?php
class FilesController extends \Phalcon\Mvc\Controller{

public function saveAction(){

//Injecting the service by just accessing the property with the same name
$this->storage->save('/some/file');

//Accessing the service from the DI
$this->di->get('storage')->save('/some/file');

//Another way to access the service using the magic getter
$this->di->getStorage()->save('/some/file');

//Another way to access the service using the magic getter
$this->getDi()->getStorage()->save('/some/file');

//Using the array-syntax
$this->di['storage']->save('/some/file');

-- Request et response

Les classes Phalcon\Http\Request et Phalcon\Http\Response représentent les services permettant d'accéder
respectivement a la requéte et a la réponse HTTP.

Exemples d'usage des classes request et Response :

class PostsController extends Phalcon\Mvc\Controller

{
public function indexAction()
{
}
public function saveAction()
{
// Vérifie si la requéte a été postée
if ($this->request->isPost() == true) {
// Accede aux données du POST
$customerName = $this->request->getPost("name");
$customerBorn = $this->request->getPost("born");
}
}
public function notFoundAction()
{
// Envoie le code d'erreur 404 dans les en-tétes de la réponse
$this->response->setStatusCode (404, "Not Found");
}

http://slamwiki2.kobject.net/ Printed on 2026/02/03 22:15

http://docs.phalconphp.com/en/latest/api/Phalcon_Http_Request.html
http://docs.phalconphp.com/en/latest/api/Phalcon_Http_Response.html

2026/02/03 22:15 5/6 Controleurs

}

-- Persistance des données

Les sessions permettent de gérer la persistance des données entre les requétes : il est possible d'accéder a la
classe Phalcon\Session\Bag depuis n'importe quel contréleur.

<?php
class UserController extends Phalcon\Mvc\Controller{

public function indexAction()

{
$this->persistent->name = "Michael";
}
public function welcomeAction()
{
echo "Welcome, ", $this->persistent->name;
}

Il est également possible d'utiliser $this—session pour assurer la persistance.
Les données ajoutés a la session ($this—»session) sont disponibles a travers toute I'application, tandis qu’avec
$this—persistant, on ne peux y accéder qu'a partir de la portée de la classe courante.

-- Base controller

Moteur de template, gestion du cache, ACL, translation sont souvent communs a plusieurs contréleurs. Il est
intéressant dans ce cas de factoriser le code en créant un contréleur de base, gérant ces services communs, et
d'en faire hériter les autres controleurs.

<?php
class ControllerBase extends \Phalcon\Mvc\Controller{

/**

* Action disponible pour tous les controleurs héritant de ControllerBase
*/

public function someAction(){

}

Tout controleur héritant de ControllerBase aura maintenant acces aux fonctionnalités de ControllerBase.

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://docs.phalconphp.com/en/latest/api/Phalcon_Session_Bag.html

Last update: 2019/08/31 14:21 slam4:php:phalcon:controllers http://slamwiki2.kobject.net/slam4/php/phalcon/controllers

<?php
class UsersController extends ControllerBase{

}

-- Evenements dans les controleurs

Les controleurs disposent d'écouteurs sur les évenements du dispatcher.
Implémenter les méthodes suivantes permet d'agir avant et apres que I'action soit exécutée.

<?php
class PostsController extends \Phalcon\Mvc\Controller{

public function beforeExecuteRoute($dispatcher){
// This is executed before every found action
if ($dispatcher->getActionName() == 'save') {

$this->flash->error("You don't have permission to save posts");

$this->dispatcher->forward(array(
"controller' => 'home',
'action' => 'index'

));

return false;

}

public function afterExecuteRoute($dispatcher){
// Executed after every found action

}

Le retour (false/true) permet éventuellement d'annuler I'action.

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/php/phalcon/controllers

Last update: 2019/08/31 14:21

http://slamwiki2.kobject.net/ Printed on 2026/02/03 22:15

http://docs.phalconphp.com/en/latest/reference/dispatching.html
http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/php/phalcon/controllers

	Contrôleurs
	-- URLs
	-- Redirections
	-- Initialisation des contrôleurs
	-- Injection de services
	-- Request et response
	-- Persistance des données
	-- Base controller
	-- Evènements dans les contrôleurs

