2026/02/17 01:09 1/11 Modeles

Modeles

Un modele est une classe métier, représentant une partie des données d'une application. Dans la plupart des
cas, un modele est associé a une table de la base de données.

Phalcon\Mvc\Model est la classe de base des models d'une application. Cette classe met a disposition des
fonctionnalités CRUD, offre des possibilités de recherche avancées, et permet de gérer les relations entre
models, le tout sans avoir besoin d'utiliser SQL

-- Création de models

<?php

class Utilisateur extends \Phalcon\Mvc\Model

{
}

<?php
class Utilisateur extends \Phalcon\Mvc\Model{

/**
*

* @var string
*/
protected $prenom;

/**

*

* @var string
*/
protected $nom;

/**

* Method to set the value of field prenom
*

* @param string $prenom

* @return $this

*/

public function setPrenom($prenom)

{

$this->prenom = $prenom;

return $this;

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://docs.phalconphp.com/en/latest/api/Phalcon_Mvc_Model.html

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421431442

/**

/**
* Method to set the value of field nom
*

* @param string $nom

* @return $this

*/
public function setNom($nom)

{

$this->nom = $nom;

return $this;

}

/**

* Returns the value of field prenom
%

* @return string

*/
public function getPrenom()
{
return $this->prenom;
}
/**

* Returns the value of field nom
*

* @return string

*/
public function getNom()
{

return $this->nom;

}

-- Mappage Objet <=> Relationnel

Par défaut, Phalcon effectue un mappage entre classes et tables de la base de données de la facon suivante :

¢ Table & Classe du méme nom
e Enregistrement ¢ instance de classe (objet métier)
¢ Colonne (champ) & membre de données du méme nom

http://slamwiki2.kobject.net/ Printed on 2026/02/17 01:09

2026/02/17 01:09

3/11

Modeles

Base de données (Table)

Modéele objet (Classe)

WHilisateur

—| utilisateur ¥
id INT{12)

“prarom
-
-dalelnscriphion
-age

Sl

~adulte
dCategone

prenom VARCHAR(50)
datelnscription DATE
age INT(11)

nom VARCHAR(50)
adulte TINYINT (1)

 idCategorie INT(11)
>

+inaticlize|)

+set Prenomi |
+zethd()

+sal Daterseription)
+set Age|)

+et Mo |

+sef Acdulte|)
+salldeategona)
+get Prenam| |
+gethd|)

+aet Dateinscription| |
spetage()

+get Mo)

+etAdulhe (|
+petidecategone (|

-- Mappage nom de table/classe

Si le nom de la table de la base de données ne correspond pas au nom de la classe, il est possible de surdéfinir

la méthode getSource :

class Users extends \Phalcon\Mvc\Model{

//Retourne le nom de la table correspondant a la classe

public function getSource(){
return "Utilisateur";

}

-- Mappage des noms

de champs/membres

De méme, si les noms de champ de la table ne correspondent pas aux membres de données de la classe :

<?php

class Utilisateur extends \Phalcon\Mvc\Model

{
protected $code;

protected $name;

public function columnMap()

{

//Les clés correspondent aux noms dans la table

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421431442

//Les valeurs aux noms dans l'application
return array(

'id' => 'code',

‘nom' => 'name'’

W

-- Relations

Avec Phalcon, les relations peuvent étre définies grace a la méthode initialize() du modeéle. Les méthodes
belongsTo(), hasOne(), hasMany() and hasManyToMany() definissent des relations entre 1 ou plusieurs
membres du modele courant et des membres d'un autre modéle. Chacune de ces méthodes requiert 3
paramétres : le membre local, le modéle cible, les membres cibles.

Méthode Description

hasMany Defines a 1-n relationship
hasOne Defines a 1-1 relationship
belongsTo Defines a n-1 relationship
hasManyToMany |Defines a n-n relationship

--belongsTo (relation n-1) & hasMany (relation 1-n)

Exemple :
Base de données (Table) Modéele objet (Classe)
Uilisateur
-prenam
4
-datelnscription
_| utilisateur v -age
-norm
id INT(12) —adulte Categorie
prenom VARCHAR(50) pCciadons -id
. tiniticize() -nom
dateln scription DATE +setPrenom) +setid()
age INT(11) sl . 0.° Apparienic__categorie _|*setNom()
+sat Dateinscription() m 1 |+getld()
nom VARCH AR(50) =setAgel) utilisateurs
:l categorie ¥ —‘L)|NIJ'I';I:' ~EELEL
adulte TINYINT (1) 1 N .
oa — idINT{li) +sat Adulte()
idCategorie INT(11) p=——""" +setideategoie|)
> nom VARCHAR(30) +oet Prenomi)
> +getid()
+get Dateinscription)
+getagel
=gt Nam(}
+getAdulte()

+retideategorns ()

-- belongsTo

Chaque utilisateur appartient a une catégorie :

class Utilisateur extends \Phalcon\Mvc\Model{

http://slamwiki2.kobject.net/ Printed on 2026/02/17 01:09

2026/02/17 01:09 5/11 Modeles

/**
B3

* @var integer
*/
protected $idCategorie;

public function initialize()

{ .

$this->belongsTo("idCategorie", "Categorie", "id");

}

Les paramétres passés a la méthode belongsTo sont :

1. idCategorie : membre local intervenant dans I'association (clé étrangere)
2. Categorie : Classe référencée associée
3. id : membre référencé dans la classe associée

Création d'une action dans le contréleur IndexController pour afficher un utilisateur et sa catégorie :

<?php
class IndexController extends \Phalcon\Mvc\Controller{
public function showUserAction($id){

$user=Utilisateur::findFirst($id);
echo $user->getNom()." : ".$user->getCategorie()->getNom();

Affichage de la réponse obtenue :

E] http:/f127.0..../showUser/16 =+

L 127.0.0.1 /phalcon/index/showlUser/16 »

JOHNSON - Admininstrateurs

utilisateur # | % | Tout surligner Respecter la casse

Phalcon charge I'utilisateur, et I'instance de catégorie correspondant, accessible grace aux méthodes magiques
_setet get

-- hasMany

Chaque catégorie est associée a 1 ou plusieurs utilisateurs :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421431442

class Categorie extends \Phalcon\Mvc\Model{

/**
%
* @var integer
*/

protected $id;

/**

*

* @var string
*/

protected $nom;

public function initialize(){
$this->hasMany("id", "Utilisateur",
"idCategorie",array("alias"=>"utilisateurs"));

}

Les paramétres passés a la méthode hasMany sont :

1. id : membre local intervenant dans I'association (clé primaire)

Utilisateur : Classe associée

idCategorie : membre associé

utilisateurs : alias du membre créé par I'association (collection d'Utilisateurs)

PwnN

<?php
class IndexController extends \Phalcon\Mvc\Controller{

public function showCategorieAction($id){
$categorie=Categorie::findFirst($id);
echo "<hl>".$categorie->getNom()."</h1>";
echo "<hr>";
foreach ($categorie->getUtilisateurs() as $user){
echo($user->getNom()."
");

}
}

On obtient une réponse par I'intermédiaire du getter getUtilisateurs(), en référence a I'alias utilisateurs,
sans qu'il ait été implémenté par nos soins, en passant par les méthodes magiques php _get et _set.

Affichage de la réponse obtenue :

http://slamwiki2.kobject.net/

Printed on 2026/02/17 01:09

2026/02/17 01:09

7/11

Modeles

http//127.0...wCategorie/2 % | +

€

Utilisateurs

127.0.0.1 /phalcon/index/showCategorie/2

WTLALN

~ o N

P ¥ H »

APACHE
ORACLE
HIBEEME
SISCAUX

Le getter getUtilisateurs() peut également étre utilisé pour filtrer les utilisateurs de la catégorie affichée :

<?php

class IndexController extends \Phalcon\Mvc\Controller{

public function showCategorieAction($id){
$categorie=Categorie::findFirst($id);

echo "<hl>".$categorie->getNom()."</h1l>";

echo "<hr>";

//Affichage des utilisateurs dont le nom contient CA
foreach ($categorie->getUtilisateurs("nom like '%CA%'") as $user){

echo($user->getNom()."
");

}

-- hasManyToMany (relation n-n)

Base de données

Modele objet

*-
adulte TINYINT(1)

dCabegone INT(1L)

L

T ubilisateur ¥

[ez
prenom VARCH SRS [uthsateur_deon v ;] dreit v
datelnscrption CATE Fr——— L_./_* IﬂSIl'h'-.l.LNTtG].r .
age MT{11) et SMALLTNT (5] belle :MLH-‘.\I\.._:TU.
nom VARCHAR(S0] admin TINYTWTY 1)

[

i v

Drak
U akr st -
...... e
agrar
rastai|
! it
[T] ——
P "
= Lok
e

Les utilisateurs disposent de droits :

<?php

class Utilisateur extends \Phalcon\Mvc\Model{

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/_detail/slam4/php/phalcon/manytomanytables.png?id=slam4%3Aphp%3Aphalcon%3Amodels
http://slamwiki2.kobject.net/_detail/slam4/php/phalcon/manytomanyobject.png?id=slam4%3Aphp%3Aphalcon%3Amodels

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421431442

public function initialize()

{
$this->belongsTo("idCategorie", "Categorie", "id");
$this->hasManyToMany("id", "UtilisateurDroit", "idUtilisateur", "idDroit",
“Droit", "id",array("alias"=>"droits"));

}

Création d'une action dans le contréleur IndexController pour afficher un utilisateur et ses droits :

<?php
class IndexController extends \Phalcon\Mvc\Controller{

public function showUserDroitsAction($id){
$user=Utilisateur::findFirst($id);
echo "<hl>".$user->getNom()." : ".$user->getCategorie()->getNom()."</h1>";
echo "";
foreach ($user->getDroits() as $droit){
echo "".$droit->getLibelle()."</1i>";
}

echo "";

E] http:/f127.0...UserDroits/16 +

€ 127.0.0.1/phalcon/index/showUserDroits/16 B - Google P ¥ A B »

JOHNSON : Admininstrateurs

s Lire
» Ecrire

-- Opérations CRUD

-- Lecture/recherche
-- find() et findFirst()

Lister tous les enregistrements d'une table :

http://slamwiki2.kobject.net/ Printed on 2026/02/17 01:09

2026/02/17 01:09 9/11

Modeles

$utilisateurs = Utilisateur::find();
foreach($utilisateurs as $utilisateur){
echo $utilisateur->getNom()."
";

}

echo "Nombre d'utilisateurs : ", count($utilisateurs), "\n";

Poser une condition :

// Comptage du nombre d'adultes
$utilisateurs = Utilisateur::find("adulte = 1");
echo "Adultes ", count($utilisateurs), "\n";

Trier :

$utilisateurs = Utilisateur::find(array(
"adulte = 1",
"order" => "nom"

));

foreach ($utilisateurs as $utilisateur) {
echo $utilisateur->nom, "\n";

}

Tri et limite :

$utilisateurs = Robots::find(array(
"adulte = 1",
"order" => "nom",
"limit" => 5
));
foreach ($utilisateurs as $utilisateur) {
echo $utilisateur->nom, "\n";

}

L'utilisation de la méthode findFirst() permet d'obtenir le premier enregistrement répondant au(x) critére(s) :

// Premier utilisateur ?
$utilisateur = Utilisateur::findFirst();

echo "Le nom du premier utilisateur est ", $utilisateur->getNom(),

Premier utilisateur répondant a un critere :

$utilisateur = Utilisateur::findFirst("adulte = 1");

echo "Le premier adulte est : ", $utilisateur->getNom(), "\n";

Premier utilisateur répondant a un critére, avec classement par nom :

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Last update: 2019/08/31 14:41 slamé4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421431442

$utilisateur = Utilisateur::findFirst(array("adulte = 1", "order" => "nom"));
echo "Le premier adulte est : ", $utilisateur->getNom(), "\n";

Les méthodes find() et findFirst() permettent de définir des critéres a partir d'un tableau associatif :

$utilisateur = Utilisateur::findFirst(array/(

"adulte = 1",
"order" => "nom DESC",
"limit" => 30

));

$utilisateurs = Utilisateur::find(array(
"conditions" => "adulte = ?1",
"bind" => array(l => 1)

));

Il est également possible de créer des requétes de facon orientée objet :

$utilisateurs = Utilisateur::query()
->where("adulte = :value:")
->andWhere("nom like 'C%'")
->bind(array("value" => 1))
->orderBy("nom")
->execute();

-- PHQL

PHQL : Phalcon Query Language, SQL orienté objet, offre également la possibilité d'interroger la base de
données :

Requéte simple :

public function allUsersAction(){
$query = $this->modelsManager->createQuery("SELECT * FROM Utilisateur);
$utilisateurs = $query->execute();
foreach ($utilisateurs as $utilisateur)
echo $utilisateur->getNom()."
";

Requéte avec paramétres :

public function adultesAction(){
$query = $this->modelsManager->createQuery("SELECT * FROM Utilisateur WHERE
adulte = :value:");
$utilisateurs = $query->execute(array(
'value' => true

http://slamwiki2.kobject.net/ Printed on 2026/02/17 01:09

http://docs.phalconphp.com/en/latest/reference/phql.html

2026/02/17 01:09 11/11 Modeles

));
foreach ($utilisateurs as $utilisateur)
echo $utilisateur->getNom()."
";

}

PHSQL retourne dans les deux cas précédents des collections d'objets de type Utilisateur.

Requéte partielle :

public function allUsersAction(){
$query = $this->modelsManager->createQuery("SELECT u.nom, u.prenom FROM
Utilisateur as u");
$rs = $query->execute();
foreach ($rs as $utilisateur)
echo $utilisateur->nom."
";

PHSQL retourne dans ce cas un recordSet constitué d'objets génériques, et non une collection d'objet de type
Utilisateur.

Jointure : Utilisateurs et catégorie

public function allUsersAction(){
$query = $this->modelsManager->createQuery("SELECT u.nom, u.prenom,c.nom as
categorie FROM Utilisateur u JOIN Categorie c");
$rs = $query->execute();
foreach ($rs as $utilisateur)
echo $utilisateur->nom." ".$utilisateur->categorie."
";

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421431442

Last update: 2019/08/31 14:41

SlamWiki 2.1 - http://slamwiki2.kobject.net/

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421431442

	Modèles
	-- Création de models
	-- Mappage Objet <=> Relationnel
	-- Mappage nom de table/classe
	-- Mappage des noms de champs/membres

	-- Relations
	--belongsTo (relation n-1) & hasMany (relation 1-n)
	-- belongsTo
	-- hasMany

	-- hasManyToMany (relation n-n)

	-- Opérations CRUD
	-- Lecture/recherche
	-- find() et findFirst()
	-- PHQL

