
2026/02/05 05:02 1/12 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Modèles

Un modèle est une classe métier, représentant une partie des données d'une application. Dans la plupart des
cas, un modèle est associé à une table de la base de données.
Phalcon\Mvc\Model est la classe de base des models d'une application. Cette classe met à disposition des
fonctionnalités CRUD, offre des possibilités de recherche avancées, et permet de gérer les relations entre
models, le tout sans avoir besoin d'utiliser SQL.

-- Création de models

<?php

class Utilisateur extends \Phalcon\Mvc\Model
{

}

<?php
class Utilisateur extends \Phalcon\Mvc\Model{

    /**
     *
     * @var string
     */
    protected $prenom;

    /**
     *
     * @var string
     */
    protected $nom;

    /**
     * Method to set the value of field prenom
     *
     * @param string $prenom
     * @return $this
     */
    public function setPrenom($prenom)
    {
        $this->prenom = $prenom;

        return $this;
    }

http://docs.phalconphp.com/en/latest/api/Phalcon_Mvc_Model.html


Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421434597

http://slamwiki2.kobject.net/ Printed on 2026/02/05 05:02

    /**

    /**
     * Method to set the value of field nom
     *
     * @param string $nom
     * @return $this
     */
    public function setNom($nom)
    {
        $this->nom = $nom;

        return $this;
    }

    /**
     * Returns the value of field prenom
     *
     * @return string
     */
    public function getPrenom()
    {
        return $this->prenom;
    }

    /**
     * Returns the value of field nom
     *
     * @return string
     */
    public function getNom()
    {
        return $this->nom;
    }

}

-- Mappage Objet <=> Relationnel

Par défaut, Phalcon effectue un mappage entre classes et tables de la base de données de la façon suivante :

Table ⇔ Classe du même nom
Enregistrement ⇔ instance de classe (objet métier)
Colonne (champ) ⇔ membre de données du même nom



2026/02/05 05:02 3/12 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Base de données (Table) Modèle objet (Classe)

-- Mappage nom de table/classe

Si le nom de la table de la base de données ne correspond pas au nom de la classe, il est possible de surdéfinir
la méthode getSource :

class Users extends \Phalcon\Mvc\Model{

    //Retourne le nom de la table correspondant à la classe
    public function getSource(){
        return "Utilisateur";
    }

}

-- Mappage des noms de champs/membres

De même, si les noms de champ de la table ne correspondent pas aux membres de données de la classe :

<?php

class Utilisateur extends \Phalcon\Mvc\Model
{
    protected $code;
    protected $name;
    public function columnMap()
    {
        //Les clés correspondent aux noms dans la table



Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421434597

http://slamwiki2.kobject.net/ Printed on 2026/02/05 05:02

        //Les valeurs aux noms dans l'application
        return array(
            'id' => 'code',
            'nom' => 'name'
        );
    }

}

-- Relations

Avec Phalcon, les relations peuvent être définies grâce à la méthode initialize() du modèle. Les méthodes
belongsTo(), hasOne(), hasMany() and hasManyToMany() definissent des relations entre 1 ou plusieurs
membres du modèle courant et des membres d'un autre modèle. Chacune de ces méthodes requiert 3
paramètres : le membre local, le modèle cible, les membres cibles.

Méthode Description
hasMany Defines a 1-n relationship
hasOne Defines a 1-1 relationship
belongsTo Defines a n-1 relationship
hasManyToMany Defines a n-n relationship

--belongsTo (relation n-1) & hasMany (relation 1-n)

Exemple :

Base de données (Table) Modèle objet (Classe)

-- belongsTo

Chaque utilisateur appartient à une catégorie :

class Utilisateur extends \Phalcon\Mvc\Model{

    ...



2026/02/05 05:02 5/12 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

    /**
     *
     * @var integer
     */
    protected $idCategorie;

    public function initialize()
    {
        $this->belongsTo("idCategorie", "Categorie", "id");
    }
    ...

Les paramètres passés à la méthode belongsTo sont :

idCategorie : membre local intervenant dans l'association (clé étrangère)1.
Categorie : Classe référencée associée2.
id : membre référencé dans la classe associée3.

Création d'une action dans le contrôleur IndexController pour afficher un utilisateur et sa catégorie :

<?php

class IndexController extends \Phalcon\Mvc\Controller{
    ...
        public function showUserAction($id){
        $user=Utilisateur::findFirst($id);
        echo $user->getNom()." : ".$user->getCategorie()->getNom();
    }
}

Affichage de la réponse obtenue :

Phalcon charge l'utilisateur, et l'instance de catégorie correspondant, accessible grâce aux méthodes magiques
_set et _get

-- hasMany

Chaque catégorie est associée à 1 ou plusieurs utilisateurs :



Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421434597

http://slamwiki2.kobject.net/ Printed on 2026/02/05 05:02

class Categorie extends \Phalcon\Mvc\Model{

    /**
     *
     * @var integer
     */
    protected $id;

    /**
     *
     * @var string
     */
    protected $nom;

    public function initialize(){
        $this->hasMany("id", "Utilisateur",
"idCategorie",array("alias"=>"utilisateurs"));
    }
    ...

Les paramètres passés à la méthode hasMany sont :

id : membre local intervenant dans l'association (clé primaire)1.
Utilisateur : Classe associée2.
idCategorie : membre associé3.
utilisateurs : alias du membre créé par l'association (collection d'Utilisateurs)4.

<?php

class IndexController extends \Phalcon\Mvc\Controller{
    ...
    public function showCategorieAction($id){
        $categorie=Categorie::findFirst($id);
        echo "<h1>".$categorie->getNom()."</h1>";
        echo "<hr>";
        foreach ($categorie->getUtilisateurs() as $user){
            echo($user->getNom()."<br>");
        }
    }
}

On obtient une réponse par l'intermédiaire du getter getUtilisateurs(), en référence à l'alias utilisateurs,
sans qu'il ait été implémenté par nos soins, en passant par les méthodes magiques php _get et _set.

Affichage de la réponse obtenue :



2026/02/05 05:02 7/12 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

Le getter getUtilisateurs() peut également être utilisé pour filtrer les utilisateurs de la catégorie affichée :

<?php

class IndexController extends \Phalcon\Mvc\Controller{
    ...
    public function showCategorieAction($id){
        $categorie=Categorie::findFirst($id);
        echo "<h1>".$categorie->getNom()."</h1>";
        echo "<hr>";
        //Affichage des utilisateurs dont le nom contient CA
        foreach ($categorie->getUtilisateurs("nom like '%CA%'") as $user){
            echo($user->getNom()."<br>");
        }
    }
}

-- hasManyToMany (relation n-n)

Base de données Modèle objet

Les utilisateurs disposent de droits :

<?php

class Utilisateur extends \Phalcon\Mvc\Model{

http://slamwiki2.kobject.net/_detail/slam4/php/phalcon/manytomanytables.png?id=slam4%3Aphp%3Aphalcon%3Amodels
http://slamwiki2.kobject.net/_detail/slam4/php/phalcon/manytomanyobject.png?id=slam4%3Aphp%3Aphalcon%3Amodels


Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421434597

http://slamwiki2.kobject.net/ Printed on 2026/02/05 05:02

    ...

    public function initialize()
    {
        $this->belongsTo("idCategorie", "Categorie", "id");
        $this->hasManyToMany("id", "UtilisateurDroit", "idUtilisateur", "idDroit",
"Droit", "id",array("alias"=>"droits"));
    }
    ...
}

Création d'une action dans le contrôleur IndexController pour afficher un utilisateur et ses droits :

<?php

class IndexController extends \Phalcon\Mvc\Controller{
    ...
    public function showUserDroitsAction($id){
        $user=Utilisateur::findFirst($id);
        echo "<h1>".$user->getNom()." : ".$user->getCategorie()->getNom()."</h1>";
        echo "<ul>";
        foreach ($user->getDroits() as $droit){
            echo "<li>".$droit->getLibelle()."</li>";
        }
        echo "</ul>";
    }
    ...
}

-- Opérations CRUD

-- Lecture/recherche

-- find() et findFirst()

Lister tous les enregistrements d'une table :



2026/02/05 05:02 9/12 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

$utilisateurs = Utilisateur::find();
foreach($utilisateurs as $utilisateur){
    echo $utilisateur->getNom()."<br>";
}
echo "Nombre d'utilisateurs : ", count($utilisateurs), "\n";

Poser une condition :

// Comptage du nombre d'adultes
$utilisateurs = Utilisateur::find("adulte = 1");
echo "Adultes ", count($utilisateurs), "\n";

Trier :

$utilisateurs = Utilisateur::find(array(
    "adulte = 1",
    "order" => "nom"
));
foreach ($utilisateurs as $utilisateur) {
    echo $utilisateur->nom, "\n";
}

Tri et limite :

$utilisateurs = Robots::find(array(
    "adulte = 1",
    "order" => "nom",
    "limit" => 5
));
foreach ($utilisateurs as $utilisateur) {
   echo $utilisateur->nom, "\n";
}

L'utilisation de la méthode findFirst() permet d'obtenir le premier enregistrement répondant au(x) critère(s) :

// Premier utilisateur ?
$utilisateur = Utilisateur::findFirst();
echo "Le nom du premier utilisateur est ", $utilisateur->getNom(), "\n";

Premier utilisateur répondant à un critère :

$utilisateur = Utilisateur::findFirst("adulte = 1");
echo "Le premier adulte est : ", $utilisateur->getNom(), "\n";

Premier utilisateur répondant à un critère, avec classement par nom :



Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421434597

http://slamwiki2.kobject.net/ Printed on 2026/02/05 05:02

$utilisateur = Utilisateur::findFirst(array("adulte = 1", "order" => "nom"));
echo "Le premier adulte est : ", $utilisateur->getNom(), "\n";

Les méthodes find() et findFirst() permettent de définir des critères à partir d'un tableau associatif :

$utilisateur = Utilisateur::findFirst(array(
    "adulte = 1",
    "order" => "nom DESC",
    "limit" => 30
));

$utilisateurs = Utilisateur::find(array(
    "conditions" => "adulte = ?1",
    "bind"       => array(1 => 1)
));

Il est également possible de créer des requêtes de façon orientée objet :

$utilisateurs = Utilisateur::query()
    ->where("adulte = :value:")
    ->andWhere("nom like 'C%'")
    ->bind(array("value" => 1))
    ->orderBy("nom")
    ->execute();

-- PHQL

PHQL : Phalcon Query Language, SQL orienté objet, offre également la possibilité d'interroger la base de
données :

Requête simple :

    public function allUsersAction(){
        $query = $this->modelsManager->createQuery("SELECT * FROM Utilisateur);
        $utilisateurs = $query->execute();
        foreach ($utilisateurs as $utilisateur)
            echo $utilisateur->getNom()."<br>";
    }

Requête avec paramètres :

    public function adultesAction(){
        $query = $this->modelsManager->createQuery("SELECT * FROM Utilisateur WHERE
adulte = :value:");
        $utilisateurs = $query->execute(array(
                'value' => true

http://docs.phalconphp.com/en/latest/reference/phql.html


2026/02/05 05:02 11/12 Modèles

SlamWiki 2.1 - http://slamwiki2.kobject.net/

        ));
        foreach ($utilisateurs as $utilisateur)
            echo $utilisateur->getNom()."<br>";
    }

PHSQL retourne dans les deux cas précédents des collections d'objets de type Utilisateur.

Requête partielle :

    public function allUsersAction(){
        $query = $this->modelsManager->createQuery("SELECT u.nom, u.prenom FROM
Utilisateur as u");
        $rs = $query->execute();
        foreach ($rs as $utilisateur)
            echo $utilisateur->nom."<br>";
    }

PHSQL retourne dans ce cas un recordSet constitué d'objets génériques, et non une collection d'objet de type
Utilisateur.

Requête partielle avec Jointure : Utilisateurs et catégorie

    public function allUsersAction(){
        $query = $this->modelsManager->createQuery("SELECT u.nom, u.prenom,c.nom as
categorie FROM Utilisateur u JOIN Categorie c");
        $rs = $query->execute();
        foreach ($rs as $utilisateur)
            echo $utilisateur->nom." ".$utilisateur->categorie."<br>";
    }

Requête complète avec jointure :

    public function allUsersAction(){
        $query = $this->modelsManager->createQuery("SELECT u.* FROM Utilisateur u
JOIN Categorie c");
        $utilisateurs = $query->execute();
        foreach ($utilisateurs as $utilisateur)
            echo $utilisateur->getNom()."
".$utilisateur->getCategorie()->getNom()."<br>";
    }

-- Ajout/mise à jour

La méthode Phalcon\Mvc\Model::save() permet d'ajouter, ou de modifier un enregistrement, s'il existe déjà dans
la base de données (la valeur de la clé primaire détermine cette existance).

    public function addUserAction(){
        $user       = new Utilisateur();



Last update: 2019/08/31 14:41 slam4:php:phalcon:models http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421434597

http://slamwiki2.kobject.net/ Printed on 2026/02/05 05:02

        $user->setNom("SMITH");
        $user->setPrenom("John");
        $user->setIdcategorie(1);
        $user->setAge(30);
        $user->setAdulte(1);
        if ($user->save() == false) {
            echo "Problème d'enregistrement \n";
            foreach ($user->getMessages() as $message) {
                echo $message, "\n";
            }
        } else {
            echo "Utilisateur ajouté";
        }
    }

From:
http://slamwiki2.kobject.net/ - SlamWiki 2.1

Permanent link:
http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421434597

Last update: 2019/08/31 14:41

http://slamwiki2.kobject.net/
http://slamwiki2.kobject.net/slam4/php/phalcon/models?rev=1421434597

	Modèles
	-- Création de models
	-- Mappage Objet <=> Relationnel
	-- Mappage nom de table/classe
	-- Mappage des noms de champs/membres

	-- Relations
	--belongsTo (relation n-1) & hasMany (relation 1-n)
	-- belongsTo
	-- hasMany

	-- hasManyToMany (relation n-n)

	-- Opérations CRUD
	-- Lecture/recherche
	-- find() et findFirst()
	-- PHQL

	-- Ajout/mise à jour



